Starch content changes and metabolism-related gene regulation of Chinese cabbage synergistically induced by Plasmodiophora brassicae infection.

Yinbo Ma, Su Ryun Choi, Yu Wang, Sushil Satish Chhapekar, Xue Zhang, Yingjun Wang, Xueying Zhang, Meiyu Zhu, Di Liu, Zhennan Zuo, Xinyu Yan, Caixia Gan, Di Zhao, Yue Liang, Wenxing Pang, Yong Pyo Lim
Author Information
  1. Yinbo Ma: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  2. Su Ryun Choi: Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea.
  3. Yu Wang: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  4. Sushil Satish Chhapekar: Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea.
  5. Xue Zhang: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  6. Yingjun Wang: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  7. Xueying Zhang: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  8. Meiyu Zhu: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  9. Di Liu: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  10. Zhennan Zuo: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  11. Xinyu Yan: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  12. Caixia Gan: Cash Crops Research Institute, Hubei Academy of Agricultural Sciences; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan 430070, China.
  13. Di Zhao: Analytical and Testing center, Shenyang agricultural university, Shenyang 110866, China.
  14. Yue Liang: College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
  15. Wenxing Pang: College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
  16. Yong Pyo Lim: Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea.

Abstract

Clubroot is one of the major diseases adversely affecting Chinese cabbage (Brassica rapa) yield and quality. To precisely characterize the Plasmodiophora brassicae infection on Chinese cabbage, we developed a dual fluorescent staining method for simultaneously examining the pathogen, cell structures, and starch grains. The number of starch (amylopectin) grains increased in B. rapa roots infected by P. brassicae, especially from 14 to 21 days after inoculation. Therefore, the expression levels of 38 core starch metabolism genes were investigated by quantitative real-time PCR. Most genes related to starch synthesis were up-regulated at seven days after the P. brassicae inoculation, whereas the expression levels of the starch degradation-related genes increased at 14 days after the inoculation. Then genes encoding the core enzymes involved in starch metabolism were investigated by assessing their chromosomal distributions, structures, duplication events, and synteny among Brassica species. Genome comparisons indicated that 38 non-redundant genes belonging to six core gene families related to starch metabolism are highly conserved among Arabidopsis thaliana, B. rapa, Brassica nigra, and Brassica oleracea. Genome sequencing projects have revealed that P. brassicae obtained host nutrients by manipulating plant metabolism. starch may serve as a carbon source for P. brassicae colonization as indicated by the histological observation and transcriptomic analysis. Results of this study may elucidate the evolution and expression of core starch metabolism genes and provide researchers with novel insights into the pathogenesis of Clubroot in B. rapa.

References

  1. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  2. Front Plant Sci. 2020 Aug 31;11:568771 [PMID: 32983217]
  3. Front Plant Sci. 2018 Sep 21;9:1344 [PMID: 30298078]
  4. Plant Sci. 2018 Nov;276:163-170 [PMID: 30348315]
  5. Genome Res. 2005 Apr;15(4):516-25 [PMID: 15781573]
  6. Sci Rep. 2016 Nov 22;6:36965 [PMID: 27874080]
  7. New Phytol. 2017 May;214(3):943-951 [PMID: 28277621]
  8. Methods Enzymol. 2013;533:225-33 [PMID: 24182927]
  9. Plant Physiol. 2009 Nov;151(3):1582-95 [PMID: 19759345]
  10. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  11. J Plant Physiol. 2019 Mar - Apr;234-235:80-93 [PMID: 30685652]
  12. Mol Plant Microbe Interact. 2002 Jul;15(7):693-700 [PMID: 12118885]
  13. Plant Cell. 2021 Jul 19;33(6):1863-1887 [PMID: 33751107]
  14. Mol Plant Microbe Interact. 2019 Oct;32(10):1259-1266 [PMID: 31210556]
  15. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 [PMID: 20921408]
  16. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  17. BMC Genomics. 2013 Sep 30;14:664 [PMID: 24079801]
  18. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  19. Phytopathology. 2014 Oct;104(10):1078-87 [PMID: 24655290]
  20. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  21. Sci Rep. 2015 Jun 18;5:11153 [PMID: 26084520]
  22. Mol Plant Microbe Interact. 2006 May;19(5):480-94 [PMID: 16673935]
  23. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  24. J Exp Bot. 2012 Feb;63(4):1593-608 [PMID: 22291134]
  25. Front Plant Sci. 2018 Jan 31;9:72 [PMID: 29445388]
  26. BMC Genomics. 2017 Jan 5;18(1):37 [PMID: 28056783]
  27. Phytopathology. 2020 Oct;110(10):1704-1712 [PMID: 32407251]
  28. Planta. 2004 Nov;220(1):9-16 [PMID: 15232694]
  29. Front Plant Sci. 2016 Dec 23;7:1929 [PMID: 28066482]
  30. Ann Bot. 2010 Dec;106(6):897-908 [PMID: 20929899]
  31. BMC Genomics. 2016 Mar 31;17:272 [PMID: 27036196]
  32. Sci Rep. 2019 Jul 12;9(1):10111 [PMID: 31300723]
  33. BMC Genomics. 2018 Jan 5;19(1):23 [PMID: 29304736]
  34. Sci Rep. 2017 Dec 1;7(1):16747 [PMID: 29196660]
  35. Sci Rep. 2017 May 24;7(1):2315 [PMID: 28539660]

Word Cloud

Created with Highcharts 10.0.0starchbrassicaegenesmetabolismBrassicarapaPcoreChinesecabbageBinoculationexpressionPlasmodiophorainfectionstructuresgrainsincreasedlevels38investigatedrelatedamongGenomeindicatedgeneStarchmayClubrootonemajordiseasesadverselyaffectingyieldqualitypreciselycharacterizedevelopeddualfluorescentstainingmethodsimultaneouslyexaminingpathogencellnumberamylopectinrootsinfectedespecially1421 daysThereforequantitativereal-timePCRsynthesisup-regulatedsevendayswhereasdegradation-related14 daysencodingenzymesinvolvedassessingchromosomaldistributionsduplicationeventssyntenyspeciescomparisonsnon-redundantbelongingsixfamilieshighlyconservedArabidopsisthaliananigraoleraceasequencingprojectsrevealedobtainedhostnutrientsmanipulatingplantservecarbonsourcecolonizationhistologicalobservationtranscriptomicanalysisResultsstudyelucidateevolutionprovideresearchersnovelinsightspathogenesisclubrootcontentchangesmetabolism-relatedregulationsynergisticallyinduced

Similar Articles

Cited By