In Silico Predictions of Ecological Plasticity Mediated by Protein Family Expansions in Early-Diverging Fungi.

Małgorzata Orłowska, Anna Muszewska
Author Information
  1. Małgorzata Orłowska: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland. ORCID
  2. Anna Muszewska: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland. ORCID

Abstract

Early-diverging fungi (EDF) are ubiquitous and versatile. Their diversity is reflected in their genome sizes and complexity. For instance, multiple protein families have been reported to expand or disappear either in particular genomes or even whole lineages. The most commonly mentioned are CAZymes (carbohydrate-active enzymes), peptidases and transporters that serve multiple biological roles connected to, e.g., metabolism and nutrients intake. In order to study the link between ecology and its genomic underpinnings in a more comprehensive manner, we carried out a systematic in silico survey of protein family expansions and losses among EDF with diverse lifestyles. We found that 86 protein families are represented differently according to EDF ecological features (assessed by median count differences). Among these there are 19 families of proteases, 43 CAZymes and 24 transporters. Some of these protein families have been recognized before as serine and metallopeptidases, cellulases and other nutrition-related enzymes. Other clearly pronounced differences refer to cell wall remodelling and glycosylation. We hypothesize that these protein families altogether define the preliminary fungal adaptasome. However, our findings need experimental validation. Many of the protein families have never been characterized in fungi and are discussed in the light of fungal ecology for the first time.

Keywords

References

  1. Protein Sci. 2012 Apr;21(4):571-82 [PMID: 22389108]
  2. Trends Biochem Sci. 2015 Jul;40(7):351-9 [PMID: 26002999]
  3. J Fungi (Basel). 2017 Sep 23;3(4): [PMID: 29371567]
  4. Eng Life Sci. 2018 Jun 27;18(11):768-778 [PMID: 32624871]
  5. J Biol Chem. 1996 Mar 29;271(13):7392-7 [PMID: 8631763]
  6. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2130-4 [PMID: 3281163]
  7. Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2583-92 [PMID: 25286843]
  8. Nucleic Acids Res. 2003 Apr 1;31(7):1944-54 [PMID: 12655011]
  9. J Fungi (Basel). 2017 Dec 29;4(1): [PMID: 29371499]
  10. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):E3651-60 [PMID: 26056261]
  11. FEBS Lett. 2015 May 22;589(12):1283-95 [PMID: 25896018]
  12. Fungal Genet Biol. 2009 Mar;46 Suppl 1:S161-S169 [PMID: 19618505]
  13. J Biol Chem. 1988 Nov 15;263(32):16696-703 [PMID: 3053697]
  14. J Biol Chem. 2003 Nov 7;278(45):44496-504 [PMID: 12933810]
  15. BMC Biotechnol. 2011 Nov 09;11:103 [PMID: 22070776]
  16. Virulence. 2019 Dec;10(1):481-489 [PMID: 30475080]
  17. Front Plant Sci. 2014 Jun 04;5:237 [PMID: 24926297]
  18. Physiol Rev. 2016 Apr;96(2):751-804 [PMID: 27030537]
  19. Gene. 1989 Jul 15;79(2):189-97 [PMID: 2507395]
  20. Trends Biochem Sci. 1993 Jan;18(1):13-20 [PMID: 8438231]
  21. Appl Environ Microbiol. 2005 Dec;71(12):8460-5 [PMID: 16332835]
  22. Bioinformatics. 2004 Dec 12;20(18):3702-4 [PMID: 15284097]
  23. Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9 [PMID: 24157837]
  24. Nat Commun. 2021 Apr 9;12(1):2132 [PMID: 33837197]
  25. Mycol Res. 2008 Aug;112(Pt 8):999-1006 [PMID: 18539447]
  26. FEBS Open Bio. 2017 Aug 29;7(9):1362-1378 [PMID: 28904865]
  27. Biochem Biophys Res Commun. 2008 Apr 18;368(4):907-12 [PMID: 18279662]
  28. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9075-9 [PMID: 3538017]
  29. Biochem J. 2005 Apr 1;387(Pt 1):211-9 [PMID: 15537393]
  30. Fungal Biol. 2010 Feb-Mar;114(2-3):151-9 [PMID: 20960971]
  31. Bioessays. 2009 Jan;31(1):29-39 [PMID: 19153999]
  32. Nature. 2002 Feb 21;415(6874):871-80 [PMID: 11859360]
  33. PLoS Genet. 2008 Apr 11;4(4):e1000046 [PMID: 18404212]
  34. New Phytol. 2015 Apr;206(1):368-380 [PMID: 25417867]
  35. Front Plant Sci. 2014 May 28;5:228 [PMID: 24904623]
  36. PLoS Genet. 2021 Oct 8;17(10):e1009817 [PMID: 34624015]
  37. Appl Environ Microbiol. 2002 Jun;68(6):2699-703 [PMID: 12039722]
  38. Mol Genet Genomics. 2019 Aug;294(4):901-917 [PMID: 30923942]
  39. Nature. 2003 Oct 16;425(6959):737-41 [PMID: 14562106]
  40. Nucleic Acids Res. 2021 Jan 8;49(D1):D461-D467 [PMID: 33170213]
  41. Bioinformatics. 2010 Jun 15;26(12):1473-6 [PMID: 20472544]
  42. Front Microbiol. 2015 Nov 18;6:1278 [PMID: 26635749]
  43. Environ Microbiol. 2015 May;17(5):1649-62 [PMID: 25143134]
  44. Sci Rep. 2017 Aug 22;7(1):9147 [PMID: 28831173]
  45. Mol Cell. 2010 Jun 25;38(6):889-99 [PMID: 20620958]
  46. Mol Cell Proteomics. 2007 Jun;6(6):1073-87 [PMID: 17351151]
  47. Nature. 1994 May 26;369(6478):289-94 [PMID: 8183366]
  48. Fungal Biol. 2020 Jan;124(1):34-43 [PMID: 31892375]
  49. Genes Dev. 2001 Oct 15;15(20):2660-74 [PMID: 11641273]
  50. mBio. 2021 Apr 13;12(2): [PMID: 33849982]
  51. Microbiology (Reading). 1997 Jun;143 ( Pt 6):1983-1992 [PMID: 9202474]
  52. J Bacteriol. 2000 Apr;182(8):2153-62 [PMID: 10735857]
  53. J Biosci Bioeng. 2021 Apr;131(4):348-355 [PMID: 33281068]
  54. Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92 [PMID: 21785931]
  55. Sci Rep. 2015 Nov 18;5:16724 [PMID: 26577702]
  56. J Biol Chem. 2007 Mar 16;282(11):8060-8 [PMID: 17166836]
  57. mBio. 2020 Sep 8;11(5): [PMID: 32900811]
  58. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  59. Biol Direct. 2009 Jan 27;4:3 [PMID: 19173708]
  60. Mob DNA. 2018 Jan 24;9:4 [PMID: 29416568]
  61. Mol Biol Evol. 2016 Apr;33(4):959-70 [PMID: 26659563]
  62. PLoS Pathog. 2014 May 15;10(5):e1004062 [PMID: 24831297]
  63. FEMS Yeast Res. 2009 Feb;9(1):115-25 [PMID: 19054127]
  64. Proc Biol Sci. 2012 Jul 7;279(1738):2497-509 [PMID: 22492065]
  65. mBio. 2015 Jul 28;6(4):e00986 [PMID: 26220968]
  66. Eukaryot Cell. 2007 Nov;6(11):2046-55 [PMID: 17873081]
  67. Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204 [PMID: 29905871]
  68. BMC Bioinformatics. 2008 Jan 14;9:18 [PMID: 18194517]
  69. Curr Opin Microbiol. 2002 Oct;5(5):513-9 [PMID: 12354560]
  70. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  71. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  72. Mol Cell Biol. 1997 Nov;17(11):6339-47 [PMID: 9343395]
  73. J Fungi (Basel). 2021 Mar 05;7(3): [PMID: 33807546]
  74. Front Microbiol. 2017 Sep 21;8:1837 [PMID: 28983298]
  75. Cell Mol Life Sci. 2004 Mar;61(6):682-99 [PMID: 15052411]
  76. Nature. 1997 May 29;387(6632 Suppl):90-3 [PMID: 9169872]
  77. Yeast. 2001 Apr;18(6):543-54 [PMID: 11284010]
  78. Trends Microbiol. 2018 Apr;26(4):284-295 [PMID: 29452950]
  79. Mol Microbiol. 2001 Jan;39(2):445-54 [PMID: 11136464]
  80. Front Plant Sci. 2017 Feb 07;8:124 [PMID: 28223991]
  81. Environ Microbiol. 2021 Oct;23(10):5716-5732 [PMID: 33538380]
  82. Nature. 2004 Feb 19;427(6976):733-7 [PMID: 14973485]
  83. EMBO J. 1998 Nov 2;17(21):6188-99 [PMID: 9799228]
  84. J Cell Biol. 2002 Jan 7;156(1):29-34 [PMID: 11781332]
  85. J Eukaryot Microbiol. 2016 Jan-Feb;63(1):37-45 [PMID: 26108336]
  86. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  87. Nat Commun. 2019 Sep 9;10(1):4080 [PMID: 31501435]
  88. Biochim Biophys Acta. 2004 Dec 15;1667(2):167-73 [PMID: 15581852]
  89. Trends Biochem Sci. 2001 May;26(5):275-7 [PMID: 11343912]
  90. PLoS One. 2011;6(12):e29425 [PMID: 22242120]
  91. Bioinformatics. 2016 Nov 1;32(21):3246-3251 [PMID: 27378296]
  92. Mol Gen Genet. 1996 Oct 28;252(6):709-16 [PMID: 8917314]
  93. Biotechnol Biofuels. 2016 Sep 05;9(1):192 [PMID: 27602055]
  94. Sci Rep. 2019 Mar 13;9(1):4307 [PMID: 30867521]
  95. Sci Rep. 2019 Aug 14;9(1):11864 [PMID: 31413281]
  96. J Biol Chem. 2003 Nov 28;278(48):47724-30 [PMID: 14504286]
  97. Mycologia. 2016 Sep;108(5):1028-1046 [PMID: 27738200]
  98. EXS. 1999;87:55-69 [PMID: 10906951]
  99. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2723-7 [PMID: 8146181]
  100. Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6882-7 [PMID: 24810719]
  101. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  102. Nat Genet. 2015 Apr;47(4):410-5 [PMID: 25706625]
  103. J Biol Chem. 1997 Feb 14;272(7):4516-21 [PMID: 9020177]
  104. Cell. 2012 Jan 20;148(1-2):213-27 [PMID: 22265413]
  105. J Biol Chem. 1990 Aug 25;265(24):14202-8 [PMID: 2167309]
  106. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  107. J Bacteriol. 2002 Jan;184(1):29-42 [PMID: 11741841]
  108. 3 Biotech. 2018 Nov;8(11):462 [PMID: 30370203]
  109. Appl Environ Microbiol. 2016 Jan 04;82(6):1686-1692 [PMID: 26729713]
  110. Biochemistry. 2000 Dec 12;39(49):15121-8 [PMID: 11106490]
  111. PLoS One. 2012;7(11):e49924 [PMID: 23185485]
  112. Hum Mol Genet. 2005 Mar 1;14(5):657-65 [PMID: 15661757]
  113. Antonie Van Leeuwenhoek. 2013 May;103(5):1029-39 [PMID: 23340718]
  114. Cell Stress Chaperones. 2016 May;21(3):379-404 [PMID: 26865365]
  115. Mycology. 2018 May 24;9(3):176-188 [PMID: 30181924]
  116. J Biol Chem. 2006 Jul 28;281(30):21445-21457 [PMID: 16717099]
  117. Cell. 2004 Feb 20;116(4):565-76 [PMID: 14980223]
  118. BMC Genomics. 2013 Apr 23;14:274 [PMID: 23617724]
  119. Metab Eng Commun. 2019 Nov 15;10:e00107 [PMID: 31799118]
  120. Science. 2016 Mar 11;351(6278):1192-5 [PMID: 26912365]
  121. Annu Rev Microbiol. 2021 Oct 8;75:673-693 [PMID: 34351790]
  122. Mycologia. 2016 May-Jun;108(3):572-80 [PMID: 26932183]
  123. Curr Opin Struct Biol. 2019 Jun;56:78-86 [PMID: 30690220]
  124. Front Microbiol. 2020 Oct 21;11:584893 [PMID: 33193229]
  125. ISME J. 2020 Oct;14(10):2381-2394 [PMID: 32514118]
  126. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  127. Curr Genet. 2008 Jul;54(1):47-55 [PMID: 18512059]
  128. FEMS Yeast Res. 2015 Nov;15(7): [PMID: 26298017]
  129. FASEB J. 2020 Jul;34(7):8902-8919 [PMID: 32519783]
  130. Mol Gen Genet. 1995 Jan 20;246(2):247-53 [PMID: 7862096]
  131. Mycopathologia. 2008 Nov-Dec;166(5-6):285-94 [PMID: 18478360]
  132. Protein Sci. 2004 Jun;13(6):1435-48 [PMID: 15152081]
  133. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11142-7 [PMID: 16847258]
  134. G3 (Bethesda). 2018 May 31;8(6):2007-2018 [PMID: 29674435]
  135. J Biol Chem. 2000 May 5;275(18):13580-7 [PMID: 10788474]
  136. Curr Biol. 2021 Apr 26;31(8):1653-1665.e5 [PMID: 33607033]
  137. Int J Mol Sci. 2013 May 02;14(5):9581-603 [PMID: 23644887]
  138. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  139. J Biol Chem. 2019 Sep 13;294(37):13833-13849 [PMID: 31416836]
  140. J Biol Chem. 2003 Nov 14;278(46):45049-55 [PMID: 12954640]
  141. Science. 2010 Dec 10;330(6010):1543-6 [PMID: 21148392]
  142. Appl Environ Microbiol. 2019 Jul 18;85(15): [PMID: 31126947]
  143. Nature. 1997 May 29;387(6632 Suppl):75-8 [PMID: 9169867]
  144. Front Microbiol. 2021 Feb 15;12:636986 [PMID: 33679672]
  145. Microbiol Rev. 1993 Sep;57(3):543-94 [PMID: 8246840]
  146. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 [PMID: 24270786]
  147. Plant Physiol. 2021 Dec 4;187(4):2071-2091 [PMID: 34618047]

Grants

  1. 2017/25/B/NZ2/01880/National Science Center

Word Cloud

Created with Highcharts 10.0.0proteinfamiliesfungiEDFmultipleCAZymesenzymespeptidasestransportersecologyfamilydifferencescellwallfungaladaptasomeEarly-divergingubiquitousversatilediversityreflectedgenomesizescomplexityinstancereportedexpanddisappeareitherparticulargenomesevenwholelineagescommonlymentionedcarbohydrate-activeservebiologicalrolesconnectedegmetabolismnutrientsintakeorderstudylinkgenomicunderpinningscomprehensivemannercarriedsystematicsilicosurveyexpansionslossesamongdiverselifestylesfound86representeddifferentlyaccordingecologicalfeaturesassessedmediancountAmong19proteases4324recognizedserinemetallopeptidasescellulasesnutrition-relatedclearlypronouncedreferremodellingglycosylationhypothesizealtogetherdefinepreliminaryHoweverfindingsneedexperimentalvalidationManynevercharacterizeddiscussedlightfirsttimeSilicoPredictionsEcologicalPlasticityMediatedProteinFamilyExpansionsEarly-DivergingFungicazymesearldiverging

Similar Articles

Cited By