Mass Spectrometry Imaging Disclosed Spatial Distribution of Defense-Related Metabolites in spp.

Laura Righetti, Sven Gottwald, Sara Tortorella, Bernhard Spengler, Dhaka Ram Bhandari
Author Information
  1. Laura Righetti: Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany. ORCID
  2. Sven Gottwald: Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
  3. Sara Tortorella: Molecular Horizon srl, Via Montelino 30, Bettona, 06084 Perugia, Italy.
  4. Bernhard Spengler: Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
  5. Dhaka Ram Bhandari: Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

Abstract

Fusarium Head Blight is the most common fungal disease that strongly affects spp., reducing crop yield and leading to the accumulation of toxic metabolites. Several studies have investigated the plant metabolic response to counteract mycotoxins accumulation. However, information on the precise location where the defense mechanism is taking place is scarce. Therefore, this study aimed to investigate the specific tissue distribution of defense metabolites in two species and use this information to postulate on the metabolites' functional role, unlocking the "location-to-function" paradigm. To address this challenge, transversal cross-sections were obtained from the middle of the grains. They were analyzed using an atmospheric-pressure (AP) SMALDI MSI source (AP-SMALDI5 AF, TransMIT GmbH, Giessen, Germany) coupled to a Q Exactive HF (Thermo Fisher Scientific GmbH, Bremen, Germany) orbital trapping mass spectrometer. Our result revealed the capability of (AP)-SMALDI MSI instrumentation to finely investigate the spatial distribution of wheat defense metabolites, such as hydroxycinnamic acid amides, oxylipins, linoleic and α-linoleic acids, galactolipids, and glycerolipids.

Keywords

References

  1. Metabolomics. 2015;11(3):722-738 [PMID: 25972772]
  2. J Agric Food Chem. 2019 Apr 10;67(14):4064-4070 [PMID: 30888165]
  3. Plant Dis. 2021 Mar;105(3):525-537 [PMID: 32915118]
  4. Food Chem. 2017 Jun 1;224:423-431 [PMID: 28159289]
  5. Front Plant Sci. 2020 Jun 05;11:664 [PMID: 32582236]
  6. Ann Bot. 2017 Sep 1;120(3):427-436 [PMID: 28911018]
  7. Plant Physiol. 2014 May;165(1):346-58 [PMID: 24686113]
  8. Biochim Biophys Acta. 2015 Mar;1851(3):282-9 [PMID: 25529980]
  9. Mol Plant Pathol. 2018 Sep;19(9):2162-2176 [PMID: 29660236]
  10. Plant Signal Behav. 2011 Jan;6(1):13-8 [PMID: 21248491]
  11. Analyst. 2015 Nov 21;140(22):7696-709 [PMID: 26462298]
  12. Langmuir. 2008 Oct 7;24(19):10901-9 [PMID: 18759387]
  13. Toxins (Basel). 2016 Mar 26;8(4):94 [PMID: 27023609]
  14. Front Plant Sci. 2017 Dec 06;8:2075 [PMID: 29270183]
  15. Plant Sci. 2018 Sep;274:432-440 [PMID: 30080631]
  16. Trends Microbiol. 2007 Mar;15(3):109-18 [PMID: 17276068]
  17. Front Microbiol. 2016 Apr 22;7:566 [PMID: 27148243]
  18. Plant J. 2021 Apr;106(1):185-199 [PMID: 33421236]
  19. Crit Rev Food Sci Nutr. 2020;60(16):2773-2789 [PMID: 31478403]
  20. Nat Methods. 2017 Jan;14(1):57-60 [PMID: 27842059]
  21. Plant Methods. 2018 Nov 17;14:103 [PMID: 30473724]
  22. Front Plant Sci. 2017 Oct 12;8:1774 [PMID: 29075283]
  23. Elife. 2021 Sep 07;10: [PMID: 34491200]
  24. Front Plant Sci. 2021 Jul 26;12:711389 [PMID: 34381485]
  25. BMC Bioinformatics. 2012;13 Suppl 16:S11 [PMID: 23176142]
  26. Sci Rep. 2016 Apr 12;6:24328 [PMID: 27066906]
  27. Rapid Commun Mass Spectrom. 2010 Feb;24(3):355-64 [PMID: 20049881]
  28. J Am Soc Mass Spectrom. 2020 Jan 2;31(1):155-163 [PMID: 32881505]
  29. Bioresour Technol. 2021 Jun;330:124987 [PMID: 33757678]
  30. Annu Rev Plant Biol. 2002;53:275-97 [PMID: 12221977]
  31. J Agric Food Chem. 2015 Dec 16;63(49):10705-16 [PMID: 26582143]
  32. Trends Plant Sci. 2019 Apr;24(4):303-310 [PMID: 30777643]
  33. Front Plant Sci. 2020 Feb 04;11:1 [PMID: 32117356]
  34. Curr Microbiol. 2015 Dec;71(6):632-7 [PMID: 26316232]
  35. Angew Chem Int Ed Engl. 2010 May 17;49(22):3834-8 [PMID: 20397170]
  36. Sci Rep. 2019 Apr 3;9(1):5577 [PMID: 30944350]
  37. Microbiol Res. 2018 Apr;209:55-69 [PMID: 29580622]
  38. Plant Physiol Biochem. 2014 Oct;83:40-50 [PMID: 25084325]
  39. Bioinformatics. 2011 Jul 1;27(13):i230-8 [PMID: 21685075]
  40. Plant J. 2018 Jan;93(1):193-206 [PMID: 29117637]
  41. Histochem Cell Biol. 2013 Jun;139(6):759-83 [PMID: 23652571]
  42. Plant Mol Biol. 2011 Nov;77(4-5):355-70 [PMID: 21830145]
  43. Int J Mol Sci. 2015 Oct 20;16(10):24839-72 [PMID: 26492237]
  44. Trends Plant Sci. 2021 Feb;26(2):184-195 [PMID: 33036915]

Grants

  1. 91714320/German Academic Exchange Service
  2. Sp314/23-1/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0metabolitesdefensefungalsppaccumulationplantmycotoxinsinformationinvestigatedistributionAPMSIGmbHGermanymasswheatFusariumHeadBlightcommondiseasestronglyaffectsreducingcropyieldleadingtoxicSeveralstudiesinvestigatedmetabolicresponsecounteractHoweverpreciselocationmechanismtakingplacescarceThereforestudyaimedspecifictissuetwospeciesusepostulatemetabolites'functionalroleunlocking"location-to-function"paradigmaddresschallengetransversalcross-sectionsobtainedmiddlegrainsanalyzedusingatmospheric-pressureSMALDIsourceAP-SMALDI5AFTransMITGiessencoupledQExactiveHFThermoFisherScientificBremenorbitaltrappingspectrometerresultrevealedcapability-SMALDIinstrumentationfinelyspatialhydroxycinnamicacidamidesoxylipinslinoleicα-linoleicacidsgalactolipidsglycerolipidsMassSpectrometryImagingDisclosedSpatialDistributionDefense-RelatedMetabolitesinfectionspectrometryimaging

Similar Articles

Cited By