Label-Free Study of the Global Cell Behavior during Exposure to Environmental Radiofrequency Fields in the Presence or Absence of Pro-Apoptotic or Pro-Autophagic Treatments.

Alexandre Joushomme, André Garenne, Mélody Dufossée, Rémy Renom, Hermanus Johannes Ruigrok, Yann Loick Chappe, Anne Canovi, Lorenza Patrignoni, Annabelle Hurtier, Florence Poulletier de Gannes, Isabelle Lagroye, Philippe Lévêque, Noëlle Lewis, Muriel Priault, Delia Arnaud-Cormos, Yann Percherancier
Author Information
  1. Alexandre Joushomme: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  2. André Garenne: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  3. Mélody Dufossée: Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France.
  4. Rémy Renom: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France. ORCID
  5. Hermanus Johannes Ruigrok: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  6. Yann Loick Chappe: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  7. Anne Canovi: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  8. Lorenza Patrignoni: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  9. Annabelle Hurtier: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  10. Florence Poulletier de Gannes: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  11. Isabelle Lagroye: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  12. Philippe Lévêque: Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France.
  13. Noëlle Lewis: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.
  14. Muriel Priault: Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France. ORCID
  15. Delia Arnaud-Cormos: Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France.
  16. Yann Percherancier: Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France.

Abstract

It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.

Keywords

References

  1. Cell Biochem Biophys. 2016 Jun;74(2):99-107 [PMID: 27260669]
  2. Int J Radiat Biol. 2020 Jun;96(6):836-843 [PMID: 32052678]
  3. Cell Stress Chaperones. 2021 Jan;26(1):241-251 [PMID: 33067759]
  4. Environ Res. 2021 May;196:110935 [PMID: 33647301]
  5. Toxicol In Vitro. 2020 Oct;68:104963 [PMID: 32777439]
  6. Biosens Bioelectron. 2021 Nov 1;191:113469 [PMID: 34229298]
  7. Ann Agric Environ Med. 2017 Jun 12;24(2):312-316 [PMID: 28664715]
  8. FEBS Lett. 1999 Jul 16;455(1-2):59-62 [PMID: 10428472]
  9. Anat Cell Biol. 2017 Jun;50(2):115-123 [PMID: 28713615]
  10. J Neurophysiol. 2018 Dec 1;120(6):2719-2729 [PMID: 30133383]
  11. Int J Radiat Biol. 2006 Apr;82(4):267-75 [PMID: 16690594]
  12. Radiat Res. 2008 Aug;170(2):235-43 [PMID: 18666817]
  13. Bioelectromagnetics. 2007 Feb;28(2):115-21 [PMID: 17004238]
  14. Bioelectromagnetics. 2017 Apr;38(3):175-185 [PMID: 28026047]
  15. J Neuroinflammation. 2015 May 29;12:105 [PMID: 26022358]
  16. Proteomics. 2006 Sep;6(17):4739-44 [PMID: 16933338]
  17. PLoS One. 2010 Jan 18;5(1):e8755 [PMID: 20090905]
  18. Int J Mol Sci. 2021 Apr 06;22(7): [PMID: 33917298]
  19. J Cell Biol. 2005 May 9;169(3):425-34 [PMID: 15866887]
  20. Cell Mol Biol Lett. 2018 Mar 27;23:13 [PMID: 29610575]
  21. IEEE Trans Biomed Eng. 2016 Nov;63(11):2317-2325 [PMID: 26886964]
  22. Environ Int. 2021 Mar;148:106386 [PMID: 33486297]
  23. Sci Rep. 2018 Sep 5;8(1):13234 [PMID: 30185877]
  24. World J Biol Chem. 2012 Feb 26;3(2):34-40 [PMID: 22371824]
  25. J Cell Physiol. 2007 Dec;213(3):759-67 [PMID: 17559061]
  26. In Vivo. 2021 Jan-Feb;35(1):155-162 [PMID: 33402461]
  27. PLoS One. 2012;7(8):e42332 [PMID: 22870319]
  28. Med Biol Eng Comput. 2018 Jan;56(1):85-97 [PMID: 28674780]
  29. Bioelectromagnetics. 2015 Sep;36(6):480-4 [PMID: 26179386]
  30. Proteomics. 2006 Sep;6(17):4732-8 [PMID: 16888767]
  31. Radiat Res. 2018 Jan;189(1):95-103 [PMID: 29059001]
  32. Sci Rep. 2014 May 29;4:5103 [PMID: 24869783]
  33. Sci Rep. 2019 Oct 25;9(1):15324 [PMID: 31653929]
  34. Proteomics. 2007 Nov;7(21):3896-905 [PMID: 17902192]
  35. Stem Cell Res Ther. 2019 Apr 15;10(1):118 [PMID: 30987681]
  36. Toxicol Rep. 2018 Nov 07;5:1169-1172 [PMID: 30627517]
  37. Toxicol In Vitro. 2019 Dec;61:104609 [PMID: 31351122]
  38. Clin Cancer Res. 2004 May 1;10(9):3179-88 [PMID: 15131059]
  39. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018 Jan 28;53(2):132-138 [PMID: 29148897]
  40. Toxicology. 2012 Feb 26;292(2-3):136-44 [PMID: 22185909]
  41. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  42. Methods Enzymol. 2017;588:79-108 [PMID: 28237120]
  43. Methods Mol Biol. 2019;2054:171-183 [PMID: 31482456]
  44. J Neurosci Methods. 2012 Jan 15;203(1):69-77 [PMID: 21963366]
  45. J Neurosci. 2000 Sep 1;20(17):6442-51 [PMID: 10964950]
  46. Int J Environ Res Public Health. 2016 Jul 12;13(7): [PMID: 27420084]
  47. Biosensors (Basel). 2015 Apr 16;5(2):199-222 [PMID: 25893878]
  48. Radiat Res. 2008 Jan;169(1):38-45 [PMID: 18159956]
  49. Sci Rep. 2020 Jun 8;10(1):9238 [PMID: 32514068]
  50. Int J Radiat Biol. 2018 Mar;94(3):295-305 [PMID: 29368975]

Grants

  1. FP7/2007-2013/European Union
  2. EST-2015/2 RF/19/French Agency for Food, Environmental and Occupational Health & Safety
  3. 2017_2 RF_012/French Agency for Food, Environmental and Occupational Health & Safety
  4. 2017-1R50217-00013458/Aquitaine Regional Council

MeSH Term

Apoptosis
Arsenic Trioxide
Astrocytes
Autophagy
Cell Line, Tumor
Culture Media, Serum-Free
Electric Impedance
Holography
Humans
Neurons
Radio Waves
Staining and Labeling
Time Factors

Chemicals

Culture Media, Serum-Free
Arsenic Trioxide

Word Cloud

Created with Highcharts 10.0.0RFcellscellularexposurecellapoptosisautophagysignalenvironmentalradiofrequencysignalsresponseusedtwolabel-freetechniquesimpedancemetryDHMhumanlinesprimaryratcortexexposedwaveGlobalSystemMobileSAR5W/kgbehaviorconstanttemperatureremainscontroversialwhetherimpactsstatusstressDigitalHolographicMicroscopyassessoverallaloneco-exposurechemicaltreatmentsknowninduceeitherTwoSH-SY5YHCT116culturesastrocytesco-cultureneuronsglialusing1800MHzcarriermodulatedvariousGSM:Communications2GUMTSUniversalTelecommunications3GLTELong-TermEvolution4GWi-FiunmodulatedcontinuousCWspecificabsorptionrates16experimentsranged24recordingimpedanceCellscontinuouslythreefiveconsecutivedaystemporalphenotypicsignaturerecordedStatisticalanalysisresultsindicateRF-EMFimpactedglobalhealthyapoptoticautophagicevenlevelshigherguidelinesprovidedkeptLabel-FreeStudyCellBehaviorExposureEnvironmentalRadiofrequencyFieldsPresenceAbsencePro-ApoptoticPro-AutophagicTreatmentsbioelectromagneticsdigitalholographicmicroscopyelectromagneticfields

Similar Articles

Cited By