Spatiotemporal Associations between Local Safety Level Index and COVID-19 Infection Risks across Capital Regions in South Korea.

Youngbin Lym, Hyobin Lym, Keekwang Kim, Ki-Jung Kim
Author Information
  1. Youngbin Lym: Research Institute of Natural Sciences, Chungnam National University, Daejeon 34134, Korea. ORCID
  2. Hyobin Lym: Korea Rural Economic Institute, Naju-si 58321, Korea.
  3. Keekwang Kim: Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea.
  4. Ki-Jung Kim: Department of Smart Car Engineering, Doowon Technical University, Anseong 10838, Korea.

Abstract

This study aims to provide an improved understanding of the local-level spatiotemporal evolution of COVID-19 spread across capital regions of South Korea during the second and third waves of the pandemic (August 2020~June 2021). To explain transmission, we rely upon the local safety level indices along with latent influences from the spatial alignment of municipalities and their serial (temporal) correlation. Utilizing a flexible hierarchical Bayesian model as an analytic operational framework, we exploit the modified BYM (BYM2) model with the Penalized Complexity (PC) priors to account for latent effects (unobserved heterogeneity). The outcome reveals that a municipality with higher population density is likely to have an elevated infection risk, whereas one with good preparedness for infectious disease tends to have a reduction in risk. Furthermore, we identify that including spatial and temporal correlations into the modeling framework significantly improves the performance and explanatory power, justifying our adoption of latent effects. Based on these findings, we present the dynamic evolution of COVID-19 across the Seoul Capital Area (SCA), which helps us verify unique patterns of disease spread as well as regions of elevated risk for further policy intervention and for supporting informed decision making for responding to infectious diseases.

Keywords

References

  1. Sci Total Environ. 2020 Aug 1;728:138835 [PMID: 32334162]
  2. PLoS One. 2021 Mar 1;16(3):e0247794 [PMID: 33647044]
  3. J Korean Med Sci. 2020 Feb 10;35(5):e61 [PMID: 32030925]
  4. BMC Infect Dis. 2020 Sep 23;20(1):700 [PMID: 32967639]
  5. Sci Total Environ. 2020 Aug 1;728:138811 [PMID: 32361118]
  6. Stoch Environ Res Risk Assess. 2021;35(8):1701-1713 [PMID: 33424434]
  7. PLoS One. 2020 Oct 9;15(10):e0240286 [PMID: 33035253]
  8. PLoS One. 2021 Mar 31;16(3):e0248336 [PMID: 33788848]
  9. Geohealth. 2021 Aug 04;5(8):e2021GH000423 [PMID: 34377879]
  10. Int J Infect Dis. 2020 Sep;98:328-333 [PMID: 32634584]
  11. Stat Methods Med Res. 2016 Aug;25(4):1145-65 [PMID: 27566770]
  12. Math Methods Appl Sci. 2022 May 30;45(8):4752-4771 [PMID: 35464828]
  13. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148655]
  14. Environ Res. 2021 Apr;195:110898 [PMID: 33610583]
  15. Environ Res. 2021 Jun;197:111126 [PMID: 33831411]
  16. Ann Epidemiol. 2020 Nov;51:7-13 [PMID: 32827672]
  17. Sustain Cities Soc. 2020 Nov;62:102418 [PMID: 32834939]
  18. Stoch Environ Res Risk Assess. 2021;35(4):797-812 [PMID: 33776559]
  19. Int J Infect Dis. 2021 Jan;102:1-9 [PMID: 33038555]
  20. Environ Res. 2022 Jan;203:111930 [PMID: 34425111]
  21. Environ Res. 2021 Oct;201:111529 [PMID: 34147467]
  22. Acta Biomed. 2020 Mar 19;91(1):157-160 [PMID: 32191675]
  23. N Engl J Med. 2021 Oct 28;385(18):1718-1720 [PMID: 34496200]
  24. Nat Med. 2021 May;27(5):790-792 [PMID: 33782619]
  25. N Engl J Med. 2020 Apr 16;382(16):1564-1567 [PMID: 32182409]
  26. Int J Epidemiol. 2020 Aug 1;49(4):1106-1116 [PMID: 32754756]
  27. Environ Res. 2020 Dec;191:110177 [PMID: 32931792]
  28. Environ Res. 2022 Jan;203:111810 [PMID: 34343550]

Grants

  1. 2021R1A6A3A01087232/National Research Foundation of Korea

MeSH Term

Bayes Theorem
COVID-19
Humans
Pandemics
Republic of Korea
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0COVID-19acrosslatentriskevolutionspreadcapitalregionsSouthKorealocalsafetylevelspatialtemporalBayesianmodelframeworkeffectsunobservedheterogeneityelevatedinfectioninfectiousdiseaseSeoulCapitalSpatiotemporalstudyaimsprovideimprovedunderstandinglocal-levelspatiotemporalsecondthirdwavespandemicAugust2020~June2021explaintransmissionrelyuponindicesalonginfluencesalignmentmunicipalitiesserialcorrelationUtilizingflexiblehierarchicalanalyticoperationalexploitmodifiedBYMBYM2PenalizedComplexityPCpriorsaccountoutcomerevealsmunicipalityhigherpopulationdensitylikelywhereasonegoodpreparednesstendsreductionFurthermoreidentifyincludingcorrelationsmodelingsignificantlyimprovesperformanceexplanatorypowerjustifyingadoptionBasedfindingspresentdynamicAreaSCAhelpsusverifyuniquepatternswellpolicyinterventionsupportinginformeddecisionmakingrespondingdiseasesAssociationsLocalSafetyLevelIndexInfectionRisksRegionsarearisksindex

Similar Articles

Cited By (3)