Control of the Verticillium Wilt on Tomato Plants by Means of Olive Leaf Extracts Loaded on Chitosan Nanoparticles.

Elisabetta Mazzotta, Rita Muzzalupo, Adriana Chiappetta, Innocenzo Muzzalupo
Author Information
  1. Elisabetta Mazzotta: Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy.
  2. Rita Muzzalupo: Dipartimento di Farmacia, Scienze della Salute e della Nutrizione, Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, 87036 Arcavacata di Rende, CS, Italy. ORCID
  3. Adriana Chiappetta: Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria, Cubo 6B, 87036 Arcavacata di Rende, CS, Italy.
  4. Innocenzo Muzzalupo: Centro di Ricerca Olivicoltura, Frutticoltura, Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA-OFA), C.da Li Rocchi-Vermicelli, 87036 Rende, CS, Italy. ORCID

Abstract

In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against . Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with , where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.

Keywords

References

  1. Annu Rev Phytopathol. 2015;53:181-98 [PMID: 26047557]
  2. Food Chem. 2012 May 1;132(1):493-8 [PMID: 26434321]
  3. Colloids Surf B Biointerfaces. 2011 Jan 1;82(1):71-80 [PMID: 20832259]
  4. Carbohydr Res. 2004 Nov 15;339(16):2693-700 [PMID: 15519328]
  5. Front Pharmacol. 2018 Jun 06;9:610 [PMID: 29928233]
  6. Int J Biol Macromol. 2013 Nov;62:677-83 [PMID: 24141067]
  7. Nanomaterials (Basel). 2020 Sep 24;10(10): [PMID: 32987697]
  8. Acta Pharmacol Sin. 2004 Jul;25(7):932-6 [PMID: 15210068]
  9. Int J Biol Macromol. 2021 Jan 1;166:1365-1376 [PMID: 33161079]
  10. Talanta. 2019 Dec 1;205:120062 [PMID: 31450425]
  11. Molecules. 2020 Apr 01;25(7): [PMID: 32244664]
  12. Int J Biomater. 2012;2012:632698 [PMID: 22829829]
  13. Polymers (Basel). 2019 Nov 01;11(11): [PMID: 31683853]
  14. Plant Physiol. 1998 Dec;118(4):1353-9 [PMID: 9847109]
  15. Pharmaceutics. 2021 May 21;13(6): [PMID: 34063874]
  16. Planta. 2009 Jan;229(2):415-26 [PMID: 18979117]
  17. Molecules. 2017 Jun 24;22(7): [PMID: 28672807]
  18. Food Sci Nutr. 2018 Apr 17;6(4):1128-1137 [PMID: 29983977]
  19. Sci Rep. 2017 Aug 29;7(1):9754 [PMID: 28851884]
  20. Methods Mol Biol. 2006;343:459-73 [PMID: 16988368]
  21. Mol Plant Pathol. 2006 Mar 1;7(2):71-86 [PMID: 20507429]
  22. Arch Razi Inst. 2021 Sep 01;76(3):571-586 [PMID: 34824750]
  23. Food Chem. 2020 Jun 1;314:126218 [PMID: 31982857]
  24. Front Bioeng Biotechnol. 2020 Mar 03;8:151 [PMID: 32195234]
  25. Front Plant Sci. 2017 Jul 27;8:1323 [PMID: 28798767]
  26. Molecules. 2020 Dec 15;25(24): [PMID: 33334001]

Word Cloud

Created with Highcharts 10.0.0CTNPsOLEactivity0VerticilliumantifungalOLE-loadedwiltconcentrationmg/mLresearchsustainablecontrolcharacterizedtermsloadedimportantsynergiceffectNanoparticlesusingsignificantlyvitroMIC14171resultshighertomatoplantsinoculatedgrowthplantstrategiesnewecofriendlyfungicideagentabilitydevelopedpurposegreenextractoliveleafpreparedultrasound-assistedextractionUAEpolyphenolcontentantioxidantchitosannanoparticlescombinephenoliccompoundsobtainsynthetizedionicgelationtechniquesizespolydispersityindexZ-potentialencapsulationefficiencyreleaseprofileQualitativequantitativeanalysesperformedHPLCmethodexhibitedgoodphysicochemicalpropertiessmallsizepositivesurfacechargecontributedhighefficacyThereforeevaluatedminimalinhibitionassayrange071Freeblankpossessedvalues3514respectivelysuggestThereaftertestedtwoconcentrationsfungalobservedexperimentInterestinglyuseddiminishedsymptomsenhancedofferspromisingopenspossibilityusesafefungicidesopenfieldControlWiltTomatoPlantsMeansOliveLeafExtractsLoadedChitosanvivoexperimentsdiseasepolyphenols

Similar Articles

Cited By