Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications.

Amal Mohamed Al-Mohaimeed, Wedad Altuhami Al-Onazi, Maha Farouk El-Tohamy
Author Information
  1. Amal Mohamed Al-Mohaimeed: Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia. ORCID
  2. Wedad Altuhami Al-Onazi: Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
  3. Maha Farouk El-Tohamy: Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.

Abstract

This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as (16 mm), (17 mm), (12 mm) and (11 mm) using a 30-µg mL sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.

Keywords

References

  1. Environ Pollut. 2020 Dec;267:115482 [PMID: 32889517]
  2. Chemosphere. 2008 Apr;71(7):1308-16 [PMID: 18194809]
  3. Phytochemistry. 2021 Jan;181:112586 [PMID: 33232862]
  4. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 15;229:118006 [PMID: 31927236]
  5. J Appl Microbiol. 2020 Jun;128(6):1634-1646 [PMID: 31954094]
  6. J Food Sci Technol. 2015 Feb;52(2):662-75 [PMID: 25694675]
  7. Molecules. 2015 Jun 12;20(6):10884-909 [PMID: 26076110]
  8. J Mater Chem B. 2020 Jun 21;8(23):4973-4989 [PMID: 32427264]
  9. Ultrason Sonochem. 2020 Dec;69:105245 [PMID: 32702636]
  10. J Hazard Mater. 2021 Jan 15;402:123560 [PMID: 32759001]
  11. Nanoscale Res Lett. 2018 May 8;13(1):141 [PMID: 29740719]
  12. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:581-589 [PMID: 28629056]
  13. Nat Rev Microbiol. 2013 Jun;11(6):371-84 [PMID: 23669886]
  14. Int J Nanomedicine. 2020 Jan 21;15:363-386 [PMID: 32021185]
  15. Nat Rev Microbiol. 2021 Jan;19(1):23-36 [PMID: 32814862]
  16. J Nanosci Nanotechnol. 2019 Jun 1;19(6):3564-3570 [PMID: 30744786]
  17. Nanomicro Lett. 2015;7(3):219-242 [PMID: 30464967]
  18. Mater Sci Eng C Mater Biol Appl. 2019 Sep;102:212-220 [PMID: 31146992]
  19. Nanomaterials (Basel). 2020 Feb 09;10(2): [PMID: 32050443]
  20. Microb Pathog. 2018 Jun;119:145-151 [PMID: 29596880]
  21. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt B:864-70 [PMID: 25459609]
  22. Nutrients. 2015 Dec 10;7(12):10369-87 [PMID: 26690472]
  23. Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:278-84 [PMID: 25280707]
  24. J Photochem Photobiol B. 2013 Mar 5;120:66-73 [PMID: 23428888]
  25. Int J Nanomedicine. 2019 Dec 02;14:9395-9410 [PMID: 31819439]
  26. Food Funct. 2016 Mar;7(3):1413-28 [PMID: 26840185]
  27. Artif Cells Nanomed Biotechnol. 2017 Dec;45(8):1751-1761 [PMID: 28140658]
  28. Mater Sci Eng C Mater Biol Appl. 2014 Aug 1;41:17-27 [PMID: 24907732]
  29. Expert Rev Anti Infect Ther. 2020 Oct;18(10):1021-1032 [PMID: 32536223]
  30. Bioinorg Chem Appl. 2018 Jul 5;2018:1062562 [PMID: 30073019]
  31. Pharmaceutics. 2019 Nov 04;11(11): [PMID: 31689932]
  32. J Food Sci Technol. 2021 Nov;58(11):4294-4302 [PMID: 34538912]
  33. J Photochem Photobiol B. 2017 Jan;166:272-284 [PMID: 28013182]
  34. Adv Sci (Weinh). 2020 Apr 06;7(10):1902913 [PMID: 32440470]
  35. Nutrients. 2016 Sep 07;8(9): [PMID: 27618090]
  36. Environ Pollut. 2011 Jul;159(7):1783-8 [PMID: 21549461]
  37. Front Biosci (Elite Ed). 2018 Mar 1;10:352-374 [PMID: 29293463]
  38. Nutrients. 2013 Apr 29;5(5):1471-87 [PMID: 23628720]

MeSH Term

Zinc Oxide
Anti-Bacterial Agents
Green Chemistry Technology
Antioxidants
Microbial Sensitivity Tests
Plant Extracts
Metal Nanoparticles
Escherichia coli
Staphylococcus aureus
Pseudomonas aeruginosa
Rhodamines
Nanoparticles
Bacillus subtilis
Photolysis
Avena
Biphenyl Compounds
Picrates

Chemicals

Zinc Oxide
Anti-Bacterial Agents
Antioxidants
Plant Extracts
rhodamine B
Rhodamines
1,1-diphenyl-2-picrylhydrazyl
Biphenyl Compounds
Picrates

Word Cloud

Created with Highcharts 10.0.0ZnONPsusingmm0ZnOnanoparticlesoatantibacterialextractgreensynthesizedactivityexhibitedpharmaceuticalfoundpotentialantioxidantICvalue±scavengingdegradationworkdescribesenvironmental-friendlypreparationaqueousadvancedelectrochemicalopticalfeaturesdisplayedexcellentimportantroledeterminationsformationnanoscaleconfirmedvariousspectroscopicmicroscopicinvestigationsformedaround100nmas-preparedmonitoreddifferentbacterialstrainsinhibitionzones1617121130-µgmLsampleconcentrationadditionsignificanteffects5867%average88035371%7305versusfreeradicalsDPPHABTSrespectivelyphotocatalyticRhodamineBdyeUVirradiationcalculatedphotodegradationprocesscarriedfunctiontime-dependentcompletenearly98%colorremoval120minConclusivelybiomassmightprovidegreatpromisefuturebiomedicalapplicationsMultifunctionalEco-FriendlySynthesisNanoparticlesBiomedicalApplicationssynthesisanalysiszincoxide

Similar Articles

Cited By