Modeling Somatic Mutations Associated With Neurodevelopmental Disorders in Human Brain Organoids.

Bipan K Deb, Helen S Bateup
Author Information
  1. Bipan K Deb: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States.
  2. Helen S Bateup: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States.

Abstract

Neurodevelopmental disorders (NDDs) are a collection of diseases with early life onset that often present with developmental delay, cognitive deficits, and behavioral conditions. In some cases, severe outcomes such as brain malformations and intractable epilepsy can occur. The mutations underlying NDDs may be inherited or , can be gain- or loss-of-function, and can affect one or more genes. Recent evidence indicates that brain somatic mutations contribute to several NDDs, in particular malformations of cortical development. While advances in sequencing technologies have enabled the detection of these somatic mutations, the mechanisms by which they alter brain development and function are not well understood due to limited model systems that recapitulate these events. Human brain organoids have emerged as powerful models to study the early developmental events of the human brain. Brain organoids capture the developmental progression of the human brain and contain human-enriched progenitor cell types. Advances in human stem cell and genome engineering provide an opportunity to model NDD-associated somatic mutations in brain organoids. These organoids can be tracked throughout development to understand the impact of somatic mutations on early human brain development and function. In this review, we discuss recent evidence that somatic mutations occur in the developing human brain, that they can lead to NDDs, and discuss how they could be modeled using human brain organoids.

Keywords

References

  1. Nat Neurosci. 2021 Oct;24(10):1488-1500 [PMID: 34426698]
  2. Exp Mol Med. 2018 Aug 7;50(8):1-7 [PMID: 30089840]
  3. Nature. 2017 May 4;545(7652):54-59 [PMID: 28445465]
  4. Nature. 2017 May 4;545(7652):48-53 [PMID: 28445462]
  5. Mol Psychiatry. 2021 Sep 8;: [PMID: 34497379]
  6. Nat Immunol. 2001 Jun;2(6):530-6 [PMID: 11376340]
  7. Am J Hum Genet. 2017 Mar 2;100(3):454-472 [PMID: 28215400]
  8. Brain. 2021 Nov 29;144(10):2971-2978 [PMID: 34048549]
  9. Open Biol. 2019 Jun 28;9(6):180265 [PMID: 31185809]
  10. Nature. 2007 Mar 8;446(7132):153-8 [PMID: 17344846]
  11. Nat Commun. 2020 Jan 29;11(1):583 [PMID: 31996670]
  12. Hum Mutat. 2011 Jan;32(1):78-90 [PMID: 21031597]
  13. Nat Neurosci. 2017 Sep;20(9):1217-1224 [PMID: 28714951]
  14. Nat Methods. 2015 Jul;12(7):671-8 [PMID: 26005811]
  15. Nature. 2010 Nov 18;468(7322):443-6 [PMID: 21085180]
  16. Nature. 2018 Oct;562(7726):268-271 [PMID: 30258228]
  17. Neurology. 2010 May 25;74(21):1716-23 [PMID: 20498439]
  18. Nat Med. 2015 Apr;21(4):395-400 [PMID: 25799227]
  19. Am J Hum Genet. 1999 Dec;65(6):1790-5 [PMID: 10577937]
  20. Brain Pathol. 2010 Nov;20(6):1096-105 [PMID: 20633017]
  21. Nat Biotechnol. 2020 Dec;38(12):1421-1430 [PMID: 33273741]
  22. Nat Rev Neurosci. 2017 Oct;18(10):573-584 [PMID: 28878372]
  23. Epilepsy Res. 2019 Sep;155:106161 [PMID: 31295639]
  24. Am J Hum Genet. 2017 Sep 7;101(3):369-390 [PMID: 28867142]
  25. Dev Neurobiol. 2021 Jul;81(5):696-709 [PMID: 33619909]
  26. Pediatr Neurol. 2020 Aug;109:39-46 [PMID: 32418847]
  27. Cell Stem Cell. 2020 May 7;26(5):766-781.e9 [PMID: 32142682]
  28. Neuroscience. 2020 Oct 1;445:1-2 [PMID: 32967770]
  29. Trends Genet. 2018 Jul;34(7):545-557 [PMID: 29731376]
  30. Neuron. 2016 Jan 20;89(2):248-68 [PMID: 26796689]
  31. Acta Neuropathol. 2019 Dec;138(6):901-912 [PMID: 31377847]
  32. Genome Biol. 2021 Mar 29;22(1):92 [PMID: 33781308]
  33. Neuropsychol Rev. 2010 Dec;20(4):327-48 [PMID: 21042938]
  34. J Clin Invest. 2011 Apr;121(4):1596-607 [PMID: 21403402]
  35. Nature. 2020 Feb;578(7793):142-148 [PMID: 31996853]
  36. Nature. 2012 Dec 20;492(7429):438-42 [PMID: 23160490]
  37. Dev Neurosci. 2021;43(3-4):143-158 [PMID: 33910214]
  38. J Clin Invest. 2018 Jun 1;128(6):2452-2458 [PMID: 29708508]
  39. Cell. 2019 Feb 7;176(4):743-756.e17 [PMID: 30735633]
  40. Nat Neurosci. 2021 Feb;24(2):176-185 [PMID: 33432195]
  41. Nat Genet. 2012 Jun 24;44(8):941-5 [PMID: 22729223]
  42. Biol Psychiatry. 2021 Jul 1;90(1):35-46 [PMID: 33867114]
  43. Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203 [PMID: 31937935]
  44. Epilepsy Curr. 2020 Nov-Dec;20(6_suppl):64S-66S [PMID: 33052752]
  45. J Clin Invest. 2019 Oct 1;129(10):4207-4223 [PMID: 31483294]
  46. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  47. Nat Med. 2020 Dec;26(12):1888-1898 [PMID: 32989314]
  48. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  49. Nat Med. 2018 Oct;24(10):1568-1578 [PMID: 30127391]
  50. Nature. 2014 Jul 17;511(7509):344-7 [PMID: 24896178]
  51. Neuron. 2017 Aug 16;95(4):779-790.e6 [PMID: 28817799]
  52. Am J Hum Genet. 1996 Aug;59(2):400-6 [PMID: 8755927]
  53. Cell Rep. 2017 Apr 4;19(1):50-59 [PMID: 28380362]
  54. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820-3 [PMID: 5279523]
  55. Science. 2019 Jan 11;363(6423):126-127 [PMID: 30630918]
  56. Cell. 2017 Mar 9;168(6):960-976 [PMID: 28283069]
  57. Cell. 2015 Jul 16;162(2):375-390 [PMID: 26186191]
  58. J Comp Neurol. 2009 Apr 10;513(5):532-41 [PMID: 19226510]
  59. J Med Genet. 1996 Nov;33(11):962-4 [PMID: 8950679]
  60. Curr Opin Genet Dev. 2020 Dec;65:84-90 [PMID: 32622340]
  61. PLoS Genet. 2016 Sep 15;12(9):e1006245 [PMID: 27632392]
  62. Ann Neurol. 2015 Apr;77(4):720-5 [PMID: 25599672]
  63. Cell Stem Cell. 2017 Apr 6;20(4):435-449.e4 [PMID: 28111201]
  64. Nat Neurosci. 2021 Mar;24(3):331-342 [PMID: 33619405]
  65. Nature. 2019 Jun;570(7762):523-527 [PMID: 31168097]
  66. Front Cell Dev Biol. 2020 Dec 10;8:610427 [PMID: 33363173]
  67. Cell. 2011 Jul 8;146(1):18-36 [PMID: 21729779]
  68. Nat Protoc. 2018 Mar;13(3):565-580 [PMID: 29470464]
  69. Cell. 2018 Oct 18;175(3):615-632 [PMID: 30340033]
  70. Cell. 2015 Sep 24;163(1):55-67 [PMID: 26406371]
  71. Cell Rep. 2017 Dec 26;21(13):3754-3766 [PMID: 29281825]
  72. Nat Commun. 2020 Oct 1;11(1):4932 [PMID: 33004838]
  73. Exp Mol Med. 2019 Jul 23;51(7):1-11 [PMID: 31337748]
  74. Trends Neurosci. 2020 Aug;43(8):608-621 [PMID: 32507511]
  75. Transl Psychiatry. 2017 Nov 17;7(11):6 [PMID: 30446636]
  76. Nat Commun. 2019 Jul 12;10(1):3090 [PMID: 31300647]
  77. Brain. 2007 Jul;130(Pt 7):1929-41 [PMID: 17522105]
  78. Nat Neurosci. 2018 Nov;21(11):1504-1514 [PMID: 30349109]
  79. Cell Stem Cell. 2016 Aug 4;19(2):248-257 [PMID: 27476966]
  80. Cell. 2020 Feb 6;180(3):568-584.e23 [PMID: 31981491]
  81. Nat Commun. 2017 Jun 15;8:15816 [PMID: 28643795]
  82. Nat Biotechnol. 2018 Jun;36(5):432-441 [PMID: 29658944]
  83. Hum Mutat. 2017 Aug;38(8):1002-1013 [PMID: 28503910]
  84. Science. 2015 Oct 2;350(6256):94-98 [PMID: 26430121]
  85. N Engl J Med. 2014 Aug 21;371(8):733-43 [PMID: 25140959]
  86. J Neuropathol Exp Neurol. 2004 Dec;63(12):1236-42 [PMID: 15624760]

Word Cloud

Created with Highcharts 10.0.0brainmutationshumansomaticdevelopmentorganoidscanNDDsearlydevelopmentalmalformationscorticalNeurodevelopmentaldisordersoccurevidencefunctionmodeleventsHumanBraincelldiscusscollectiondiseaseslifeonsetoftenpresentdelaycognitivedeficitsbehavioralconditionscasessevereoutcomesintractableepilepsyunderlyingmayinheritedgain-loss-of-functionaffectonegenesRecentindicatescontributeseveralparticularadvancessequencingtechnologiesenableddetectionmechanismsalterwellunderstoodduelimitedsystemsrecapitulateemergedpowerfulmodelsstudycaptureprogressioncontainhuman-enrichedprogenitortypesAdvancesstemgenomeengineeringprovideopportunityNDD-associatedtrackedthroughoutunderstandimpactreviewrecentdevelopingleadmodeledusingModelingSomaticMutationsAssociatedDisordersOrganoidsmTORneurodevelopmental

Similar Articles

Cited By