Rapid and column-free syntheses of acyl fluorides and peptides using generated thionyl fluoride.

Cayo Lee, Brodie J Thomson, Glenn M Sammis
Author Information
  1. Cayo Lee: Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada gsammis@chem.ubc.ca. ORCID
  2. Brodie J Thomson: Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada gsammis@chem.ubc.ca. ORCID
  3. Glenn M Sammis: Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada gsammis@chem.ubc.ca. ORCID

Abstract

Thionyl fluoride (SOF) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the generation of SOF and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.

References

  1. Angew Chem Int Ed Engl. 2018 Mar 1;57(10):2605-2610 [PMID: 29276888]
  2. Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6858-6862 [PMID: 29663685]
  3. J Am Chem Soc. 2019 Aug 7;141(31):12288-12295 [PMID: 31309835]
  4. J Org Chem. 2021 Mar 5;86(5):3768-3777 [PMID: 33567820]
  5. Angew Chem Int Ed Engl. 2020 Dec 1;59(49):21930-21934 [PMID: 32810335]
  6. ACS Catal. 2021 Jun 4;11(11):6578-6589 [PMID: 34123485]
  7. Org Biomol Chem. 2019 Apr 17;17(16):4087-4101 [PMID: 30957817]
  8. Chemistry. 2020 Apr 16;26(22):4958-4962 [PMID: 32074386]
  9. Chem Rev. 2009 Jun;109(6):2455-504 [PMID: 19364121]
  10. J Pept Res. 2001 Oct;58(4):338-41 [PMID: 11606219]
  11. Chemistry. 2016 Apr 11;22(16):5692-7 [PMID: 26990693]
  12. J Am Chem Soc. 2018 Feb 28;140(8):2919-2925 [PMID: 29451783]
  13. Org Lett. 2009 Nov 5;11(21):5050-3 [PMID: 19799406]
  14. J Am Chem Soc. 2018 Dec 19;140(50):17666-17673 [PMID: 30481008]
  15. J Am Chem Soc. 2015 Aug 5;137(30):9571-4 [PMID: 26177230]
  16. Chem Rev. 2011 Nov 9;111(11):6557-602 [PMID: 21866984]
  17. Chem Sci. 2019 Sep 20;10(44):10331-10335 [PMID: 32110320]
  18. Angew Chem Int Ed Engl. 2020 Jan 27;59(5):2115-2119 [PMID: 31733009]
  19. J Am Chem Soc. 2017 Feb 1;139(4):1452-1455 [PMID: 28111944]
  20. Angew Chem Int Ed Engl. 2014 Sep 1;53(36):9466-9470 [PMID: 25100330]
  21. Chemistry. 2019 Feb 6;25(8):1906-1909 [PMID: 30346050]
  22. Org Biomol Chem. 2019 Sep 7;17(33):7684-7688 [PMID: 31393502]
  23. Org Lett. 2021 Feb 5;23(3):847-852 [PMID: 33464095]
  24. Org Lett. 2018 Feb 2;20(3):812-815 [PMID: 29327935]
  25. Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1835-8 [PMID: 26696445]
  26. Org Lett. 2015 Apr 17;17(8):1942-5 [PMID: 25856416]
  27. Adv Sci (Weinh). 2019 Sep 30;6(23):1901551 [PMID: 31832315]
  28. Org Lett. 2020 Aug 21;22(16):6682-6686 [PMID: 32806146]
  29. J Am Chem Soc. 2018 Dec 5;140(48):16464-16468 [PMID: 30433772]
  30. Chem Soc Rev. 2012 Mar 7;41(5):1826-44 [PMID: 22012213]
  31. Tetrahedron Lett. 2005 Dec 19;46(51):8917-8920 [PMID: 16755305]
  32. J Org Chem. 2004 Apr 2;69(7):2573-6 [PMID: 15049661]
  33. Chem Soc Rev. 2019 Aug 27;48(17):4731-4758 [PMID: 31364998]
  34. J Org Chem. 2019 May 3;84(9):5803-5812 [PMID: 30868885]
  35. Org Lett. 2020 Nov 6;22(21):8658-8664 [PMID: 33044828]
  36. J Org Chem. 2019 Dec 6;84(23):15706-15717 [PMID: 31663742]
  37. Org Lett. 2017 Oct 6;19(19):5244-5247 [PMID: 28901771]
  38. Angew Chem Int Ed Engl. 2019 Jan 21;58(4):957-966 [PMID: 30024079]

Word Cloud

Created with Highcharts 10.0.0yieldsisolatedsynthesisfluorideSOFsubsequentgenerationacylfluoridesaminocolumn-freedemonstratednewmethodphasepeptideThionylfirst1896less10reportsusereagentorganicpartlyduelackfacilelab-scalemethodsHereinreportnovelprotocoldemonstrationabilityaccessaliphaticaromatic55-98%mildconditionsshortreactiontimesdemonstrateaptitudeacidcouplingsone-potstrategyaffordscorrespondingdipeptides65-97%minimalepimerizationbroadscopeallowswiderangeprotectinggroupsnaturalunnaturalacidsFinallycanusedsequentialliquidLPPSaffordtri-tetra-penta-decapeptides14-88%withoutneedcolumnchromatographyalsoamenablesolidSPPSaffordingdi-pentapeptides80-98%Rapidsynthesespeptidesusinggeneratedthionyl

Similar Articles

Cited By