Privacy-Preserving Artificial Intelligence Techniques in Biomedicine.

Reihaneh Torkzadehmahani, Reza Nasirigerdeh, David B Blumenthal, Tim Kacprowski, Markus List, Julian Matschinske, Julian Spaeth, Nina Kerstin Wenke, Jan Baumbach
Author Information
  1. Reihaneh Torkzadehmahani: Institute for Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany.
  2. Reza Nasirigerdeh: Institute for Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany.
  3. David B Blumenthal: Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-N��rnberg (FAU), Erlangen, Germany.
  4. Tim Kacprowski: Division of Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Medical School Hannover, Braunschweig, Germany.
  5. Markus List: Chair of Experimental Bioinformatics, Technical University of Munich, Munich, Germany.
  6. Julian Matschinske: E.U. Horizon2020 FeatureCloud Project Consortium.
  7. Julian Spaeth: E.U. Horizon2020 FeatureCloud Project Consortium.
  8. Nina Kerstin Wenke: E.U. Horizon2020 FeatureCloud Project Consortium.
  9. Jan Baumbach: E.U. Horizon2020 FeatureCloud Project Consortium.

Abstract

BACKGROUND: Artificial intelligence (AI) has been successfully applied in numerous scientific domains. In biomedicine, AI has already shown tremendous potential, e.g., in the interpretation of next-generation sequencing data and in the design of clinical decision support systems.
OBJECTIVES: However, training an AI model on sensitive data raises concerns about the privacy of individual participants. For example, summary statistics of a genome-wide association study can be used to determine the presence or absence of an individual in a given dataset. This considerable privacy risk has led to restrictions in accessing genomic and other biomedical data, which is detrimental for collaborative research and impedes scientific progress. Hence, there has been a substantial effort to develop AI methods that can learn from sensitive data while protecting individuals' privacy.
METHOD: This paper provides a structured overview of recent advances in privacy-preserving AI techniques in biomedicine. It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems.
CONCLUSION: As the most promising direction, we suggest combining federated machine learning as a more scalable approach with other additional privacy-preserving techniques. This would allow to merge the advantages to provide privacy guarantees in a distributed way for biomedical applications. Nonetheless, more research is necessary as hybrid approaches pose new challenges such as additional network or computation overhead.

References

  1. BMC Med Inform Decis Mak. 2014;14 Suppl 1:S2 [PMID: 25521306]
  2. J Am Med Inform Assoc. 2016 May;23(3):570-9 [PMID: 26554428]
  3. JAMA. 2018 Apr 3;319(13):1317-1318 [PMID: 29532063]
  4. NPJ Digit Med. 2020 Sep 14;3:119 [PMID: 33015372]
  5. Nat Biotechnol. 2018 Jul;36(6):547-551 [PMID: 29734293]
  6. AMIA Annu Symp Proc. 2017 Feb 10;2016:1747-1755 [PMID: 28269933]
  7. BMC Med Inform Decis Mak. 2015;15 Suppl 5:S5 [PMID: 26733391]
  8. Nat Genet. 2006 Aug;38(8):904-9 [PMID: 16862161]
  9. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8344-8352 [PMID: 32234789]
  10. JMIR Med Inform. 2018 Apr 17;6(2):e19 [PMID: 29666041]
  11. BMC Med Genomics. 2014;7 Suppl 1:S14 [PMID: 25079786]
  12. Med Image Anal. 2015 Feb;20(1):237-48 [PMID: 25547073]
  13. ACM Comput Surv. 2015 Sep;48(1): [PMID: 26640318]
  14. BMC Med Genomics. 2017 Jul 26;10(Suppl 2):39 [PMID: 28786360]
  15. J Priv Confid. 2013;5(1):137-166 [PMID: 26525346]
  16. IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):93-102 [PMID: 29993695]
  17. Biol Direct. 2018 Feb 6;13(1):1 [PMID: 29409513]
  18. Cell Syst. 2020 May 20;10(5):408-416.e9 [PMID: 32359425]
  19. KDD. 2013 Aug;2013:1079-1087 [PMID: 26691928]
  20. PLoS One. 2020 Apr 17;15(4):e0230706 [PMID: 32302316]
  21. Ann N Y Acad Sci. 2017 Jan;1387(1):73-83 [PMID: 27681358]
  22. Cell. 2018 Jun 14;173(7):1562-1565 [PMID: 29906441]
  23. Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243 [PMID: 29507784]
  24. Nat Biomed Eng. 2018 Oct;2(10):719-731 [PMID: 31015651]
  25. Nat Rev Cancer. 2018 Aug;18(8):500-510 [PMID: 29777175]
  26. IEEE Trans Knowl Data Eng. 2022 Feb;34(2):996-1010 [PMID: 36158636]
  27. Sci Data. 2018 Sep 11;5:180178 [PMID: 30204154]
  28. Brief Bioinform. 2017 Sep 1;18(5):851-869 [PMID: 27473064]
  29. J Digit Imaging. 2017 Aug;30(4):499-505 [PMID: 28656455]
  30. Circ Cardiovasc Qual Outcomes. 2019 Jul;12(7):e005122 [PMID: 31284738]
  31. Brainlesion. 2019;11383:92-104 [PMID: 31231720]
  32. BMC Bioinformatics. 2018 Dec 20;19(1):537 [PMID: 30572817]
  33. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248 [PMID: 28301734]
  34. Science. 2008 Oct 3;322(5898):44 [PMID: 18772394]
  35. Cell Syst. 2016 Jul;3(1):54-61 [PMID: 27453444]
  36. Bioinformatics. 2013 Apr 1;29(7):886-93 [PMID: 23413435]
  37. Nat Genet. 2014 Feb;46(2):100-6 [PMID: 24473328]
  38. BMC Med Inform Decis Mak. 2014;14 Suppl 1:S3 [PMID: 25521367]
  39. Bioinformatics. 2017 Mar 15;33(6):871-878 [PMID: 28065902]
  40. BMC Med Inform Decis Mak. 2015;15 Suppl 5:S1 [PMID: 26732892]
  41. J Biomed Inform. 2013 Jun;46(3):480-96 [PMID: 23562651]
  42. Science. 2016 Jun 10;352(6291):1278-80 [PMID: 27284183]
  43. Int J Med Inform. 2018 Apr;112:59-67 [PMID: 29500022]
  44. BMC Med Inform Decis Mak. 2016 Jul 25;16 Suppl 3:89 [PMID: 27454168]
  45. BMC Med Genomics. 2017 Jul 26;10(Suppl 2):43 [PMID: 28786364]
  46. Brief Bioinform. 2019 May 21;20(3):887-895 [PMID: 29121240]
  47. Nat Rev Genet. 2015 Jun;16(6):321-32 [PMID: 25948244]
  48. BMC Med Inform Decis Mak. 2015;15 Suppl 5:S4 [PMID: 26733307]
  49. PLoS Genet. 2008 Aug 29;4(8):e1000167 [PMID: 18769715]
  50. J Biomed Inform. 2018 May;81:41-52 [PMID: 29550393]
  51. Med Image Anal. 2020 Oct;65:101765 [PMID: 32679533]
  52. Nat Rev Genet. 2014 Jun;15(6):409-21 [PMID: 24805122]
  53. J Am Med Inform Assoc. 2018 Aug 1;25(8):945-954 [PMID: 29617797]
  54. Nat Methods. 2018 Apr;15(4):290-298 [PMID: 29505029]
  55. J Healthc Inform Res. 2021;5(1):1-19 [PMID: 33204939]
  56. BMC Med Inform Decis Mak. 2015;15 Suppl 5:S2 [PMID: 26733045]
  57. J Am Med Inform Assoc. 2015 Nov;22(6):1212-9 [PMID: 26159465]
  58. Nat Commun. 2018 Jun 22;9(1):2453 [PMID: 29934598]
  59. JMIR Med Inform. 2019 Apr 29;7(2):e12702 [PMID: 31033449]
  60. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  61. Crit Care Med. 2018 Apr;46(4):547-553 [PMID: 29286945]
  62. IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730 [PMID: 29993445]
  63. Bioinformatics. 2016 May 1;32(9):1293-300 [PMID: 26769317]
  64. Genome Biol. 2022 Jan 24;23(1):32 [PMID: 35073941]
  65. Genome Biol. 2019 Jul 2;20(1):128 [PMID: 31262363]
  66. BMC Med Inform Decis Mak. 2015;15 Suppl 5:S3 [PMID: 26733152]
  67. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  68. Am J Hum Genet. 2015 Nov 5;97(5):631-46 [PMID: 26522470]
  69. Nat Biotechnol. 2019 Mar;37(3):220-224 [PMID: 30833764]
  70. IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1413-1426 [PMID: 30004884]
  71. Nat Biotechnol. 2018 Oct;36(9):829-838 [PMID: 30188539]
  72. Drug Discov Today. 2018 Jun;23(6):1241-1250 [PMID: 29366762]
  73. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  74. J Am Med Inform Assoc. 2020 May 1;27(5):700-708 [PMID: 32196092]
  75. IEEE/ACM Trans Comput Biol Bioinform. 2019 Jul-Aug;16(4):1328-1341 [PMID: 30010584]
  76. J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64 [PMID: 22511014]
  77. JMIR Med Inform. 2018 Apr 13;6(2):e20 [PMID: 29653917]

MeSH Term

Artificial Intelligence
Decision Support Systems, Clinical
Genome-Wide Association Study
Humans
Machine Learning
Privacy

Word Cloud

Created with Highcharts 10.0.0AIdataprivacyArtificialscientificbiomedicinesensitiveindividualcanbiomedicalresearchprivacy-preservingtechniquesapproachesadditionalBACKGROUND:intelligencesuccessfullyappliednumerousdomainsalreadyshowntremendouspotentialeginterpretationnext-generationsequencingdesignclinicaldecisionsupportsystemsOBJECTIVES:Howevertrainingmodelraisesconcernsparticipantsexamplesummarystatisticsgenome-wideassociationstudyuseddeterminepresenceabsencegivendatasetconsiderableriskledrestrictionsaccessinggenomicdetrimentalcollaborativeimpedesprogressHencesubstantialeffortdevelopmethodslearnprotectingindividuals'METHOD:paperprovidesstructuredoverviewrecentadvancesplacesimportantstate-of-the-artwithinunifiedtaxonomydiscussesstrengthslimitationsopenproblemsCONCLUSION:promisingdirectionsuggestcombiningfederatedmachinelearningscalableapproachallowmergeadvantagesprovideguaranteesdistributedwayapplicationsNonethelessnecessaryhybridposenewchallengesnetworkcomputationoverheadPrivacy-PreservingIntelligenceTechniquesBiomedicine

Similar Articles

Cited By