Genome insights into the pharmaceutical and plant growth promoting features of the novel species Nocardia alni sp. nov.

Imen Nouioui, Sung-Min Ha, Inwoo Baek, Jongsik Chun, Michael Goodfellow
Author Information
  1. Imen Nouioui: Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany. imen.nouioui@dsmz.de.
  2. Sung-Min Ha: Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
  3. Inwoo Baek: School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.
  4. Jongsik Chun: School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.
  5. Michael Goodfellow: School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, NE1 7RU, Newcastle upon Tyne, UK.

Abstract

BACKGROUND: Recent studies highlighted the biosynthetic potential of nocardiae to produce diverse novel natural products comparable to that of Streptomyces, thereby making them an attractive source of new drug leads. Many of the 119 Nocardia validly named species were isolated from natural habitats but little is known about the diversity and the potential of the endophytic nocardiae of root nodule of actinorhizal plants.
RESULTS: The taxonomic status of an actinobacterium strain, designated ncl2, was established in a genome-based polyphasic study. The strain was Gram-stain-positive, produced substrate and aerial hyphae that fragmented into coccoid and rod-like elements and showed chemotaxonomic properties that were also typical of the genus Nocardia. It formed a distinct branch in the Nocardia 16S rRNA gene tree and was most closely related to the type strains of Nocardia nova (98.6%), Nocardia jiangxiensis (98.4%), Nocardia miyuensis (97.8%) and Nocardia vaccinii (97.7%). A comparison of the draft genome sequence generated for the isolate with the whole genome sequences of its closest phylogenetic neighbours showed that it was most closely related to the N. jiangxiensis, N. miyuensis and N. vaccinii strains, a result underpinned by average nucleotide identity and digital DNA-DNA hybridization data. Corresponding taxogenomic data, including those from a pan-genome sequence analysis showed that strain ncl2 was most closely related to N. vaccinii DSM 43285. A combination of genomic, genotypic and phenotypic data distinguished these strains from one another. Consequently, it is proposed that strain ncl2 (= DSM 110931 = CECT 30122) represents a new species within the genus Nocardia, namely Nocardia alni sp. nov. The genomes of the N. alni and N. vaccinii strains contained 36 and 29 natural product-biosynthetic gene clusters, respectively, many of which were predicted to encode for a broad range of novel specialised products, notably antibiotics. Genome mining of the N. alni strain and the type strains of its closest phylogenetic neighbours revealed the presence of genes associated with direct and indirect mechanisms that promote plant growth. The core genomes of these strains mainly consisted of genes involved in amino acid transport and metabolism, energy production and conversion and transcription.
CONCLUSIONS: Our genome-based taxonomic study showed that isolate ncl2 formed a new centre of evolutionary variation within the genus Nocardia. This novel endophytic strain contained natural product biosynthetic gene clusters predicted to synthesize novel specialised products, notably antibiotics and genes associated with the expression of plant growth promoting compounds.

Keywords

References

  1. J Antibiot (Tokyo). 1998 Feb;51(2):123-9 [PMID: 9544932]
  2. Front Public Health. 2019 Aug 16;7:228 [PMID: 31475130]
  3. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  4. Am Rev Respir Dis. 1969 Jan;99(1):94-100 [PMID: 4973588]
  5. Antonie Van Leeuwenhoek. 2019 Jan;112(1):75-90 [PMID: 30203358]
  6. Int J Syst Evol Microbiol. 2015 Sep;65(9):3148-3154 [PMID: 26297293]
  7. Int J Syst Evol Microbiol. 2017 May;67(5):1613-1617 [PMID: 28005526]
  8. PLoS One. 2012;7(4):e34846 [PMID: 22536335]
  9. Int J Syst Evol Microbiol. 2007 Jun;57(Pt 6):1183-1187 [PMID: 17551026]
  10. ACS Chem Biol. 2013 Jan 18;8(1):242-8 [PMID: 23101964]
  11. J Antibiot (Tokyo). 2002 Jun;55(6):593-7 [PMID: 12195966]
  12. Org Biomol Chem. 2019 Mar 13;17(11):2954-2971 [PMID: 30806648]
  13. Antonie Van Leeuwenhoek. 2015 Jul;108(1):31-9 [PMID: 25896308]
  14. Int J Syst Evol Microbiol. 2016 Feb;66(2):1100-1103 [PMID: 26585518]
  15. Nat Commun. 2019 May 16;10(1):2182 [PMID: 31097708]
  16. AIMS Microbiol. 2017 May 31;3(3):383-412 [PMID: 31294168]
  17. J Antibiot (Tokyo). 1989 Dec;42(12):1768-74 [PMID: 2621160]
  18. Mol Pharm. 2019 Apr 1;16(4):1456-1466 [PMID: 30821469]
  19. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6258-63 [PMID: 21444795]
  20. Chembiochem. 2019 Jun 3;20(11):1387-1393 [PMID: 30694017]
  21. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  22. Int J Syst Evol Microbiol. 2005 Sep;55(Pt 5):1921-1925 [PMID: 16166688]
  23. J Antibiot (Tokyo). 2018 Jul;71(7):633-641 [PMID: 29618770]
  24. Int J Syst Evol Microbiol. 2012 Jun;62(Pt 6):1228-1234 [PMID: 21742817]
  25. Sci Rep. 2017 Sep 8;7(1):11051 [PMID: 28887555]
  26. Plant J. 2000 Nov;24(3):327-33 [PMID: 11069706]
  27. FEMS Microbiol Lett. 2004 May 15;234(2):349-55 [PMID: 15135543]
  28. J Bacteriol. 2007 Aug;189(15):5495-503 [PMID: 17526710]
  29. Springerplus. 2013 Oct 31;2:587 [PMID: 25674415]
  30. Appl Environ Microbiol. 1990 Apr;56(4):908-12 [PMID: 16348176]
  31. Ann Lab Med. 2019 Nov;39(6):530-536 [PMID: 31240880]
  32. Appl Microbiol. 1974 Aug;28(2):226-31 [PMID: 4605116]
  33. Chembiochem. 2016 Feb 2;17(3):247-53 [PMID: 26629877]
  34. Org Lett. 2017 Nov 17;19(22):6208-6211 [PMID: 29090939]
  35. Int J Syst Evol Microbiol. 2016 Nov;66(11):4633-4638 [PMID: 27503503]
  36. J Antibiot (Tokyo). 1990 Nov;43(11):1489-96 [PMID: 2272923]
  37. J Am Chem Soc. 2012 Dec 5;134(48):19552-5 [PMID: 23157252]
  38. Microbiol Immunol. 1982;26(12):1101-19 [PMID: 6763136]
  39. J Antibiot (Tokyo). 1996 Mar;49(3):299-311 [PMID: 8626248]
  40. BMC Genomics. 2013 Apr 27;14:286 [PMID: 23622346]
  41. BMC Bioinformatics. 2013 Feb 21;14:60 [PMID: 23432962]
  42. Int J Syst Evol Microbiol. 2019 Jan;69(1):159-164 [PMID: 30489236]
  43. Int J Syst Evol Microbiol. 2017 May;67(5):1451-1456 [PMID: 27974088]
  44. Nat Commun. 2019 Jan 31;10(1):516 [PMID: 30705269]
  45. J Theor Biol. 1998 Jan 7;190(1):63-8 [PMID: 9473391]
  46. Antonie Van Leeuwenhoek. 2014 Jun;105(6):1099-106 [PMID: 24715251]
  47. Int J Syst Evol Microbiol. 2011 Aug;61(Pt 8):1854-1858 [PMID: 20817835]
  48. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  49. Arch Biochem Biophys. 2007 Mar 15;459(2):233-40 [PMID: 17178094]
  50. Biomed Res Int. 2018 May 20;2018:7314054 [PMID: 29888277]
  51. Chembiochem. 2008 Dec 15;9(18):2967-75 [PMID: 19025863]
  52. Front Microbiol. 2017 Jun 22;8:1113 [PMID: 28690593]
  53. Biotechnol Adv. 1999 Oct;17(4-5):319-39 [PMID: 14538133]
  54. Int J Syst Evol Microbiol. 2011 Dec;61(Pt 12):2933-2937 [PMID: 21278414]
  55. Antonie Van Leeuwenhoek. 2014 Mar;105(3):443-50 [PMID: 24366612]
  56. Evid Based Complement Alternat Med. 2011;2011:615032 [PMID: 21716683]
  57. Antonie Van Leeuwenhoek. 2013 May;103(5):1079-88 [PMID: 23371034]
  58. J Infect. 2007 Mar;54(3):277-84 [PMID: 16822547]
  59. Int J Syst Bacteriol. 1996 Jan;46(1):259-64 [PMID: 8573505]
  60. Biochemistry. 2007 Feb 13;46(6):1523-33 [PMID: 17279617]
  61. Nucleic Acids Res. 2014 Jan;42(Database issue):D231-9 [PMID: 24297252]
  62. J Antibiot (Tokyo). 1987 May;40(5):575-88 [PMID: 3610816]
  63. Microorganisms. 2020 Oct 01;8(10): [PMID: 33019781]
  64. J Antibiot (Tokyo). 1986 Jul;39(7):888-901 [PMID: 3093430]
  65. Int J Syst Evol Microbiol. 2018 Jan;68(1):192-197 [PMID: 29125460]
  66. J Clin Microbiol. 1982 Sep;16(3):584-6 [PMID: 7130373]
  67. Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):417-20 [PMID: 19196788]
  68. Clin Dermatol. 2008 Jul-Aug;26(4):326-33 [PMID: 18691511]
  69. J Antibiot (Tokyo). 1999 Jan;52(1):13-9 [PMID: 10092191]
  70. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15442-7 [PMID: 19720995]
  71. Int J Syst Evol Microbiol. 2018 Jan;68(1):461-466 [PMID: 29292687]
  72. ISME J. 2010 Oct;4(10):1265-81 [PMID: 20445637]
  73. mSystems. 2020 Jun 2;5(3): [PMID: 32487740]
  74. J Bacteriol. 1980 Oct;144(1):356-65 [PMID: 6998957]
  75. Chem Biol. 1997 Dec;4(12):927-37 [PMID: 9427658]
  76. Bioinformatics. 2013 Jul 15;29(14):1823-4 [PMID: 23740744]
  77. BMC Genomics. 2014 Apr 30;15:323 [PMID: 24884595]
  78. Int J Syst Evol Microbiol. 2020 Oct;70(10):5226-5234 [PMID: 32815801]
  79. Int J Syst Evol Microbiol. 2009 Mar;59(Pt 3):589-608 [PMID: 19244447]
  80. Cell Mol Life Sci. 1998 Aug;54(8):833-50 [PMID: 9760992]
  81. Biochemistry. 1996 May 28;35(21):6527-32 [PMID: 8639600]
  82. Int J Syst Evol Microbiol. 2019 Jun;71(3): [PMID: 33560199]
  83. FEMS Microbiol Ecol. 2008 Mar;63(3):383-400 [PMID: 18194345]
  84. Microbiol Immunol. 2004;48(11):817-22 [PMID: 15557739]
  85. Front Microbiol. 2018 Aug 22;9:2007 [PMID: 30186281]
  86. J Antimicrob Chemother. 1989 Apr;23(4):517-25 [PMID: 2526111]
  87. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):385-407 [PMID: 30659436]
  88. Antonie Van Leeuwenhoek. 2008 Mar;93(3):241-8 [PMID: 17717723]
  89. Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):29-33 [PMID: 12656148]
  90. Pol J Pharmacol Pharm. 1976 May-Jun;28(4):349-52 [PMID: 981024]
  91. J Clin Microbiol. 2017 Dec 26;56(1): [PMID: 29118169]
  92. PLoS Pathog. 2020 Mar 5;16(3):e1008280 [PMID: 32134995]
  93. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  94. Chem Rev. 2019 Dec 26;119(24):12337-12374 [PMID: 31738523]

MeSH Term

Bacterial Typing Techniques
Base Composition
DNA, Bacterial
Fatty Acids
Frankia
Nucleic Acid Hybridization
Pharmaceutical Preparations
Phylogeny
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Soil Microbiology

Chemicals

DNA, Bacterial
Fatty Acids
Pharmaceutical Preparations
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0NocardiaNnovelstrainstrainsnaturalncl2showedvacciniialnigrowthproductsnewgenusgenecloselyrelateddataantibioticsGenomegenesplantpromotingbiosyntheticpotentialnocardiaeendophytictaxonomicgenome-basedstudypropertiesformedtype98jiangxiensismiyuensis97genomesequenceisolateclosestphylogeneticneighboursDSM=specieswithinspnovgenomescontainedclusterspredictedspecialisednotablyminingassociatedBACKGROUND:RecentstudieshighlightedproducediversecomparableStreptomycestherebymakingattractivesourcedrugleadsMany119validlynamed speciesisolatedhabitatslittleknowndiversityrootnoduleactinorhizalplantsRESULTS:statusactinobacteriumdesignatedestablishedpolyphasicGram-stain-positiveproducedsubstrateaerialhyphaefragmentedcoccoidrod-likeelementschemotaxonomicalsotypicaldistinctbranch16SrRNAtreenova6%4%8%7%comparisondraftgeneratedwholesequencesresultunderpinnedaveragenucleotideidentitydigitalDNA-DNAhybridizationCorrespondingtaxogenomicincludingpan-genomeanalysis43285combinationgenomicgenotypicphenotypicdistinguishedoneanotherConsequentlyproposed110931CECT30122representsnamely3629product-biosyntheticrespectivelymanyencodebroadrangerevealedpresencedirectindirectmechanismspromotecoremainlyconsistedinvolvedaminoacidtransportmetabolismenergyproductionconversiontranscriptionCONCLUSIONS:centreevolutionaryvariationproductsynthesizeexpressioncompoundsinsightspharmaceuticalfeaturesPlantPolyphasictaxonomyPutatively

Similar Articles

Cited By (7)