Multilayer Reservoir Computing Based on Ferroelectric α-In Se for Hierarchical Information Processing.

Keqin Liu, Bingjie Dang, Teng Zhang, Zhen Yang, Lin Bao, Liying Xu, Caidie Cheng, Ru Huang, Yuchao Yang
Author Information
  1. Keqin Liu: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  2. Bingjie Dang: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  3. Teng Zhang: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  4. Zhen Yang: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  5. Lin Bao: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  6. Liying Xu: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  7. Caidie Cheng: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  8. Ru Huang: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China.
  9. Yuchao Yang: Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China. ORCID

Abstract

Dynamic physical systems such as reservoir computing (RC) architectures show a great prospect in temporal information processing, whereas hierarchical information processing capability is still lacking due to the absence of advanced multilayer reservoir elements. Here, a stackable reservoir system is constructed based on ferroelectric α-In Se devices with voltage input and output, which is realized by dynamic voltage division between a ferroelectric field-effect transistor and a planar device and therefore allows the reservoirs to cascade, enabling multilayer RC. Fast Fourier transformation analysis shows high-harmonic generation in the first layer as a result of inherent nonlinearity of the reservoir, and progressive low-pass filtering effect is realized where higher-frequency components are progressively filtered in deeper-layer RCs. Time-series prediction and waveform classification tasks are also demonstrated, serving as evidence for the memory capacity and computing capability of the deep reservoir architecture. This work can provide a promising pathway in exploiting emerging 2D materials and dynamics for advanced neuromorphic computing architectures.

Keywords

References

  1. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen, S.-H. Ji, Science 2016, 353, 274.
  2. N. Higashitarumizu, H. Kawamoto, C.-J. Lee, B.-H. Lin, F.-H. Chu, I. Yonemori, T. Nishimura, K. Wakabayashi, W.-H. Chang, K. Nagashio, Nat. Commun. 2020, 11, 2428.
  3. C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, L. J. Li, Nano Lett. 2018, 18, 1253.
  4. S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, J. Hao, Nat. Commun. 2019, 10, 1775.
  5. F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, Z. Liu, Nat. Commun. 2016, 7, 12357.
  6. Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, K. Lai, Nano Lett. 2017, 17, 5508.
  7. F. Xue, W. Hu, K. C. Lee, L. S. Lu, J. Zhang, H. L. Tang, A. Han, W. T. Hsu, S. Tu, W. H. Chang, C. H. Lien, J. H. He, Z. Zhang, L. J. Li, X. Zhang, Adv. Funct. Mater. 2018, 28, 1803738.
  8. F. Xue, X. He, J. R. D. Retamal, A. Han, J. Zhang, Z. Liu, J. K. Huang, W. Hu, V. Tung, J. H. He, L. J. Li, X. Zhang, Adv. Mater. 2019, 31, 1901300.
  9. Y. Bao, P. Song, Y. Liu, Z. Chen, M. Zhu, I. Abdelwahab, J. Su, W. Fu, X. Chi, W. Yu, W. Liu, X. Zhao, Q.-H. Xu, M. Yang, K. P. Loh, Nano Lett. 2019, 19, 5109.
  10. M. W. Si, A. K. Saha, S. J. Gao, G. Qiu, J. K. Qin, Y. Q. Duan, J. Jian, C. Niu, H. Y. Wang, W. Z. Wu, S. K. Gupta, P. D. D. Ye, Nat. Electron. 2019, 2, 580.
  11. J. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, H. Wang, Nat. Electron. 2020, 3, 466.
  12. S. Wang, L. Liu, L. Gan, H. Chen, X. Hou, Y. Ding, S. Ma, D. W. Zhang, P. Zhou, Nat. Commun. 2021, 12, 53.
  13. K. C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang, I.-H. Park, H. S. Choi, T. Ma, Z. Zhu, B. Tian, C. Su, K. P. Loh, ACS Nano 2020, 14, 7628.
  14. J. Xiao, H. Zhu, Y. Wang, W. Feng, Y. Hu, A. Dasgupta, Y. Han, Y. Wang, D. A. Muller, L. W. Martin, P. Hu, X. Zhang, Phys. Rev. Lett. 2018, 120, 227601.
  15. M. Si, Z. Zhang, S. C. Chang, N. Haratipour, D. Zheng, J. Li, U. E. Avci, P. D. Ye, ACS Nano 2021, 15, 5689.
  16. M. Gabel, Y. Gu, Adv. Funct. Mater. 2021, 31, 2009999.
  17. F. Xue, X. He, Z. Wang, J. R. D. Retamal, Z. Chai, L. Jing, C. Zhang, H. Fang, Y. Chai, T. Jiang, W. Zhang, H. N. Alshareef, Z. Ji, L.-J. Li, J.-H. He, X. Zhang, Adv. Mater. 2021, 33, 2008709.
  18. M. Dai, K. Li, F. Wang, Y. Hu, J. Zhang, T. Zhai, B. Yang, Y. Fu, W. Cao, D. Jia, Y. Zhou, P. Hu, Adv. Electron. Mater. 2020, 6, 1900975.
  19. L. Wang, X. Wang, Y. Zhang, R. Li, T. Ma, K. Leng, Z. Chen, I. Abdelwahab, K. P. Loh, Adv. Funct. Mater. 2020, 30, 2004609.
  20. G. Tanaka, T. Yamane, J. B. Heroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A. Hirose, Neural Networks 2019, 115, 100.
  21. G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani, L. Boarino, D. Ielmini, C. Ricciardi, Nat. Mater. 2022, 21, 195.
  22. L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo, S. Zheng, S. Lee, W. J. Yu, B.-S. Kong, H. Yang, Sci. Adv. 2021, 7, eabg1455.
  23. C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, W. D. Lu, Nat. Commun. 2017, 8, 2204.
  24. R. Midya, Z. Wang, S. Asapu, X. Zhang, M. Rao, W. Song, Y. Zhuo, N. Upadhyay, Q. Xia, J. J. Yang, Adv. Intell. Syst. 2019, 1, 1900084.
  25. J. Moon, W. Ma, J. H. Shin, F. X. Cai, C. Du, S. H. Lee, W. D. Lu, Nat. Electron. 2019, 2, 480.
  26. J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Y. Uasa, M. D. Stiles, J. Grollier, Nature 2017, 547, 428.
  27. Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, H. Wu, Nat. Commun. 2021, 12, 408.
  28. C. Gallicchio, A. Micheli, L. Silvestri, Neurocomputing 2018, 298, 34.
  29. C. Gallicchio, A. Micheli, L. Pedrelli, Neurocomputing 2017, 268, 87.
  30. N. Bertschinger, T. Natschlager, Neural Comput. 2004, 16, 1413.
  31. C. Gallicchio, A. Micheli, L. Pedrelli, in Neural Advances in Processing Nonlinear Dynamic Signals. WIRN 2017, (Eds: A. Esposito, M. Faundez-Zanuy, F. Morabito, E. Pasero), Springer, Cham, Switzerland, 2018, pp. 119-129.
  32. W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, W. Zhu, Nat. Commun. 2017, 8, 14956
  33. S. Wan, Y. Li, W. Li, X. Mao, W. Zhu, H. Zeng, Nanoscale 2018, 10, 14885.
  34. L. Liu, J. Dong, J. Huang, A. Nie, K. Zhai, J. Xiang, B. Wang, F. Wen, C. Mu, Z. Zhao, Y. Gong, Y. Tian, Z. Liu, Chem. Mater. 2019, 31, 10143.
  35. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer, Nat. Commun. 2011, 2, 468.
  36. Time Series Management System - v2.1, https://www3.bcb.gov.br/sgspub (accessed: November 2021).
  37. E. M. Oliveira, F. L. C. Oliveira, Energy 2018, 144, 776.
  38. H. Jaeger, Short Term Memory in Echo State Networks, GMD-Report 152, German National Research Institute for Information Technology, Bonn, Germany 2002.
  39. H. Jaeger, A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “Echo State Network” Approach, GMD-Report 159, German National Research Institute for Information Technology, Bonn, Germany 2002.
  40. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, Opt. Express 2012, 20, 22783.
  41. J. Bueno, D. Brunner, M. C. Soriano, I. Fischer, Opt. Express 2017, 25, 2401.
  42. K. Sakai, M. Yagi, M. Ito, J.-i. Shirakashi, Appl. Phys. Lett. 2021, 119, 084101.
  43. S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji, A. Fukushima, S. Yuasa, H. Kubota, Appl. Phys. Lett. 2019, 114, 164101.
  44. E. Nako, K. Toprasertpong, R. Nakane, Z. Wang, Y. Miyatake, M. Takenaka, S. Takagi, in 2020 IEEE Symp. on VLSI Technology, IEEE, Piscataway, NJ, USA 2020, https://doi.org/10.1109/VLSITechnology18217.2020.9265110.

Grants

  1. 2017YFA0207600/National Key R&D Program of China
  2. 61925401/National Natural Science Foundation of China
  3. 92064004/National Natural Science Foundation of China
  4. 61927901/National Natural Science Foundation of China
  5. 92164302/National Natural Science Foundation of China
  6. 2019BD002/Project
  7. 2020BD010/Project
  8. /PKU-Baidu Fund

Word Cloud

Created with Highcharts 10.0.0reservoircomputingarchitecturesferroelectricRCinformationprocessinghierarchicalcapabilityadvancedmultilayerα-InSevoltagerealizedDynamicphysicalsystemsshowgreatprospecttemporalwhereasstilllackingdueabsenceelementsstackablesystemconstructedbaseddevicesinputoutputdynamicdivisionfield-effecttransistorplanardevicethereforeallowsreservoirscascadeenablingFastFouriertransformationanalysisshowshigh-harmonicgenerationfirstlayerresultinherentnonlinearityprogressivelow-passfilteringeffecthigher-frequencycomponentsprogressivelyfiltereddeeper-layerRCsTime-seriespredictionwaveformclassificationtasksalsodemonstratedservingevidencememorycapacitydeeparchitectureworkcanprovidepromisingpathwayexploitingemerging2DmaterialsdynamicsneuromorphicMultilayerReservoirComputingBasedFerroelectricHierarchicalInformationProcessingα-In2Se3memristors

Similar Articles

Cited By