On the macroecological significance of eco-evolutionary dynamics: the range shift-niche breadth hypothesis.

Lesley T Lancaster
Author Information
  1. Lesley T Lancaster: School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK. ORCID

Abstract

Global correlations of range size and niche breadth, and their relationship to latitude, have long intrigued ecologists and biogeographers. Study of these patterns has given rise to a number of hypothesized ecological and evolutionary processes purported to shape biogeographic outcomes, including the climate variability hypothesis, oscillation hypothesis, ecological opportunity, competitive release and taxon cycles. Here, I introduce the alternative , which posits that broader niches and larger range sizes are jointly determined under eco-evolutionary processes unique to expanding ranges, which may or may not be adaptive, but which co-shape observed latitudinal gradients in niche breadth and range size during periods of widespread range expansion. I formulate this hypothesis in comparison against previous hypotheses, exploring how each relies on equilibrium versus non-equilibrium evolutionary processes, faces differing issues of definition and scale, and results in alternative predictions for comparative risk and resilience of global ecosystems. Such differences highlight that accurate understanding of process is critical when applying macroecological insight to biodiversity forecasting. Furthermore, past conceptual emphasis on a central role of local adaptation under equilibrium conditions may have obscured a ubiquitous role of non-equilibrium evolutionary processes for generating many important, regional and global macroecological patterns. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.

Keywords

References

  1. Glob Chang Biol. 2021 Aug;27(15):3505-3518 [PMID: 33896082]
  2. Proc Biol Sci. 2014 Nov 7;281(1794):20141779 [PMID: 25253462]
  3. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):442-7 [PMID: 25548168]
  4. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5708-11 [PMID: 21436040]
  5. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13580-13587 [PMID: 32482870]
  6. J Biol Dyn. 2015;9:317-35 [PMID: 26406927]
  7. Nature. 2015 Sep 24;525(7570):515-8 [PMID: 26374998]
  8. Ecol Lett. 2013 Aug;16(8):1104-14 [PMID: 23773417]
  9. J Evol Biol. 2009 Apr;22(4):907-12 [PMID: 19220649]
  10. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):680-5 [PMID: 26729867]
  11. Mol Ecol. 2020 Nov;29(21):4102-4117 [PMID: 32246535]
  12. Ecol Evol. 2021 Feb 11;11(5):2336-2345 [PMID: 33717459]
  13. Am Nat. 2004 Jul;164(1):E1-19 [PMID: 15266376]
  14. Proc Biol Sci. 2013 Dec 11;281(1776):20131800 [PMID: 24335979]
  15. Ecology. 2020 Oct;101(10):e03139 [PMID: 32697876]
  16. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33875589]
  17. Evolution. 2018 Sep;72(9):1773-1783 [PMID: 30019746]
  18. Ecol Evol. 2015 Jan;5(1):176-95 [PMID: 25628875]
  19. J Anim Ecol. 2019 Feb;88(2):247-257 [PMID: 30303530]
  20. Am Nat. 2017 Aug;190(2):E40-E54 [PMID: 28731794]
  21. Am Nat. 2015 Oct;186 Suppl 1:S74-89 [PMID: 26656219]
  22. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 [PMID: 18458348]
  23. Nat Ecol Evol. 2020 Aug;4(8):1044-1059 [PMID: 32451428]
  24. Ecol Lett. 2011 Jul;14(7):677-89 [PMID: 21535340]
  25. Ecology. 2010 Jun;91(6):1617-27 [PMID: 20583704]
  26. Science. 2008 Jun 6;320(5881):1296-7 [PMID: 18535231]
  27. Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712): [PMID: 27920390]
  28. PLoS Biol. 2010 Apr 27;8(4):e1000357 [PMID: 20463950]
  29. Am Nat. 2014 Feb;183(2):157-73 [PMID: 24464192]
  30. Proc Biol Sci. 2000 Apr 22;267(1445):739-45 [PMID: 10819141]
  31. Am Nat. 2020 Mar;195(3):E87-E99 [PMID: 32097041]
  32. Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):145-150 [PMID: 29255020]
  33. Am Nat. 2009 Nov;174(5):595-612 [PMID: 19788354]
  34. Nat Ecol Evol. 2021 May;5(5):656-662 [PMID: 33686182]
  35. Am Nat. 2019 Jun;193(6):798-813 [PMID: 31094605]
  36. Ecol Lett. 2014 Sep;17(9):1149-57 [PMID: 25040103]
  37. Mol Ecol. 2021 Oct;30(20):4991-5008 [PMID: 34379852]
  38. PLoS Biol. 2018 Jun 15;16(6):e2005372 [PMID: 29906294]
  39. Glob Chang Biol. 2017 Oct;23(10):4094-4105 [PMID: 28449200]
  40. Nat Ecol Evol. 2020 Jul;4(7):963-969 [PMID: 32424277]
  41. Mol Ecol. 2016 Mar;25(5):1141-56 [PMID: 26821170]
  42. Ecol Lett. 2021 Jun;24(6):1262-1281 [PMID: 33884749]
  43. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6401-6 [PMID: 25941385]
  44. J Anim Ecol. 2017 May;86(3):543-555 [PMID: 28217836]

MeSH Term

Acclimatization
Biodiversity
Biological Evolution
Climate
Ecosystem

Word Cloud

Created with Highcharts 10.0.0rangebreadthprocesseshypothesisnicheevolutionarymaymacroecologicalsizepatternsecologicalalternativeeco-evolutionaryrangesequilibriumnon-equilibriumglobalrolepartGlobalcorrelationsrelationshiplatitudelongintriguedecologistsbiogeographersStudygivenrisenumberhypothesizedpurportedshapebiogeographicoutcomesincludingclimatevariabilityoscillationopportunitycompetitivereleasetaxoncyclesintroducepositsbroadernicheslargersizesjointlydetermineduniqueexpandingadaptiveco-shapeobservedlatitudinalgradientsperiodswidespreadexpansionformulatecomparisonprevioushypothesesexploringreliesversusfacesdifferingissuesdefinitionscaleresultspredictionscomparativeriskresilienceecosystemsdifferenceshighlightaccurateunderstandingprocesscriticalapplyinginsightbiodiversityforecastingFurthermorepastconceptualemphasiscentrallocaladaptationconditionsobscuredubiquitousgeneratingmanyimportantregionalarticlethemeissue'Species'facechangingenvironments'significancedynamics:shift-nichebiogeogrpahyevolutionshifts

Similar Articles

Cited By (11)