Filovirus VP24 Proteins Differentially Regulate RIG-I and MDA5-Dependent Type I and III Interferon Promoter Activation.

Felix B He, Hira Khan, Moona Huttunen, Pekka Kolehmainen, Krister Melén, Sari Maljanen, Mengmeng Qu, Miao Jiang, Laura Kakkola, Ilkka Julkunen
Author Information
  1. Felix B He: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  2. Hira Khan: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  3. Moona Huttunen: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  4. Pekka Kolehmainen: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  5. Krister Melén: Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
  6. Sari Maljanen: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  7. Mengmeng Qu: Research Center for Clinical & Translational Medicine, Fifth Medical Center for General Hospital of People's Liberation Army (PLA), Beijing, China.
  8. Miao Jiang: Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
  9. Laura Kakkola: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.
  10. Ilkka Julkunen: Institute of Biomedicine/Virology, University of Turku, Turku, Finland.

Abstract

Filovirus family consists of highly pathogenic viruses that have caused fatal outbreaks especially in many African countries. Previously, research focus has been on Ebola, Sudan and Marburg viruses leaving other filoviruses less well studied. filoviruses, in general, pose a significant global threat since they are highly virulent and potentially transmissible between humans causing sporadic infections and local or widespread epidemics. filoviruses have the ability to downregulate innate immunity, and especially viral protein 24 (VP24), VP35 and VP40 have variably been shown to interfere with interferon (IFN) gene expression and signaling. Here we systematically analyzed the ability of VP24 proteins of nine Filovirus family members to interfere with retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5) induced IFN-β and IFN-λ1 promoter activation. All VP24 proteins were localized both in the cell cytoplasm and nucleus in variable amounts. VP24 proteins of Zaire and Sudan ebolaviruses, Lloviu, Taï Forest, Reston, Marburg and Bundibugyo viruses (EBOV, SUDV, LLOV, TAFV, RESTV, MARV and BDBV, respectively) were found to inhibit both RIG-I and MDA5 stimulated IFN-β and IFN-λ1 promoter activation. The inhibition takes place downstream of interferon regulatory factor 3 phosphorylation suggesting the inhibition to occur in the nucleus. VP24 proteins of Mengla (MLAV) or Bombali viruses (BOMV) did not inhibit IFN-β or IFN-λ1 promoter activation. Six ebolavirus VP24s and Lloviu VP24 bound tightly, whereas MARV and MLAV VP24s bound weakly, to importin α5, the subtype that regulates the nuclear import of STAT complexes. MARV and MLAV VP24 binding to importin α5 was very weak. Our data provides new information on the innate immune inhibitory mechanisms of Filovirus VP24 proteins, which may contribute to the pathogenesis of Filovirus infections.

Keywords

References

  1. J Immunol. 2007 Sep 15;179(6):3434-42 [PMID: 17785777]
  2. Arch Virol Suppl. 2008;20:13-360 [PMID: 18637412]
  3. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  4. Viruses. 2015 Sep 29;7(10):5172-90 [PMID: 26426036]
  5. Cell Host Microbe. 2013 Jul 17;14(1):74-84 [PMID: 23870315]
  6. J Virol. 2020 Jun 16;94(13): [PMID: 32295912]
  7. Cell Host Microbe. 2014 Aug 13;16(2):187-200 [PMID: 25121748]
  8. J Virol. 2006 Jun;80(11):5156-67 [PMID: 16698996]
  9. Arch Virol. 2016 Aug;161(8):2351-60 [PMID: 27216929]
  10. Front Immunol. 2019 Jul 17;10:1586 [PMID: 31379819]
  11. Curr Opin Virol. 2019 Apr;35:42-56 [PMID: 31003196]
  12. Mol Cell Biol. 1998 May;18(5):2986-96 [PMID: 9566918]
  13. Virol J. 2006 Sep 01;3:66 [PMID: 16945160]
  14. Virology. 1985 Nov;147(1):169-76 [PMID: 4060597]
  15. Methods. 2020 Nov 1;183:21-29 [PMID: 31682923]
  16. J Gen Virol. 2008 Jan;89(Pt 1):1-47 [PMID: 18089727]
  17. J Virol. 2012 Mar;86(6):2900-10 [PMID: 22258243]
  18. J Virol. 2015 Dec;89(23):12014-25 [PMID: 26378160]
  19. Nat Rev Microbiol. 2015 Nov;13(11):663-76 [PMID: 26439085]
  20. J Microbiol Methods. 2008 Oct;75(2):318-24 [PMID: 18674572]
  21. Virology. 2017 Jan 15;501:147-165 [PMID: 27930961]
  22. FEMS Microbiol Rev. 2016 Jul;40(4):494-519 [PMID: 27268907]
  23. J Virol. 2009 Apr;83(7):3069-77 [PMID: 19153231]
  24. J Biol Chem. 2002 Aug 16;277(33):30072-8 [PMID: 12048190]
  25. J Immunol. 2011 Aug 15;187(4):1713-21 [PMID: 21742966]
  26. Viruses. 2019 Nov 04;11(11): [PMID: 31690057]
  27. J Biol Chem. 2003 Jul 25;278(30):28193-200 [PMID: 12740372]
  28. Elife. 2016 Mar 24;5:e11275 [PMID: 27011352]
  29. Nat Immunol. 2004 Jul;5(7):730-7 [PMID: 15208624]
  30. Virology. 2015 Nov;485:145-52 [PMID: 26255028]
  31. Arch Virol. 2010 Dec;155(12):2083-103 [PMID: 21046175]
  32. J Leukoc Biol. 2015 Feb;97(2):307-20 [PMID: 25473098]
  33. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):637-42 [PMID: 11805321]
  34. Virology. 2017 Sep;509:23-34 [PMID: 28595092]
  35. Curr Opin Virol. 2014 Jun;6:40-6 [PMID: 24713352]
  36. J Virol. 2014 Nov;88(21):12500-10 [PMID: 25142601]
  37. J Biol Chem. 2006 Jan 27;281(4):2095-103 [PMID: 16306043]
  38. PLoS Pathog. 2010 Jan 15;6(1):e1000721 [PMID: 20084112]
  39. Virology. 2015 May;479-480:122-30 [PMID: 25843618]

MeSH Term

Cell Line, Tumor
DEAD Box Protein 58
Filoviridae
Gene Expression Regulation
HEK293 Cells
Humans
Interferon Type I
Interferon-Induced Helicase, IFIH1
Interferons
Interleukins
Promoter Regions, Genetic
Receptors, Immunologic
Viral Proteins

Chemicals

interferon-lambda, human
Interferon Type I
Interleukins
Receptors, Immunologic
Viral Proteins
Interferons
RIGI protein, human
IFIH1 protein, human
DEAD Box Protein 58
Interferon-Induced Helicase, IFIH1

Word Cloud

Created with Highcharts 10.0.0VP24proteinsvirusesinterferonfilovirusRIG-IinnateMDA5IFN-βIFN-λ1promoteractivationMARVMLAVFilovirusfamilyhighlyespeciallySudanMarburgFilovirusesinfectionsabilityimmunityinterferegenenucleusLloviuinhibitinhibitionebolavirusVP24sboundimportinα5IIIpathwaytypeconsistspathogeniccausedfataloutbreaksmanyAfricancountriesPreviouslyresearchfocusEbolaleavingfiloviruseslesswellstudiedgeneralposesignificantglobalthreatsincevirulentpotentiallytransmissiblehumanscausingsporadiclocalwidespreadepidemicsdownregulateviralprotein24VP35VP40variablyshownIFNexpressionsignalingsystematicallyanalyzedninemembersretinoicacid-induciblemelanomadifferentiation-associatedantigen5inducedlocalizedcellcytoplasmvariableamountsZaireebolavirusesTaïForestRestonBundibugyoEBOVSUDVLLOVTAFVRESTVBDBVrespectivelyfoundstimulatedtakesplacedownstreamregulatoryfactor3phosphorylationsuggestingoccurMenglaBombaliBOMVSixtightlywhereasweaklysubtyperegulatesnuclearimportSTATcomplexesbindingweakdataprovidesnewinformationimmuneinhibitorymechanismsmaycontributepathogenesisProteinsDifferentiallyRegulateMDA5-DependentTypeInterferonPromoterActivation

Similar Articles

Cited By (7)