Retinomorphic optoelectronic devices for intelligent machine vision.

Weilin Chen, Zhang Zhang, Gang Liu
Author Information
  1. Weilin Chen: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China.
  2. Zhang Zhang: School of Microelectronics, Hefei University of Technology, Hefei 230601, China.
  3. Gang Liu: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China.

Abstract

Biological visual system can efficiently handle optical information within the retina and visual cortex of the brain, which suggests an alternative approach for the upgrading of the current low-intelligence, large energy consumption, and complex circuitry of the artificial vision system for high-performance edge computing applications. In recent years, retinomorphic machine vision based on the integration of optoelectronic image sensors and processors has been regarded as a promising candidate to improve this phenomenon. This novel intelligent machine vision technology can perform information preprocessing near or even within the sensor in the front end, thereby reducing the transmission of redundant raw data and improving the efficiency of the back-end processor for high-level computing tasks. In this contribution, we try to present a comprehensive review on the recent progress achieved in this emergent field.

Keywords

References

  1. Sci Rep. 2017 Mar 21;7:44768 [PMID: 28322299]
  2. Science. 2016 Jul 29;353(6298):aac9439 [PMID: 27471306]
  3. Nature. 2020 May;581(7808):278-282 [PMID: 32433619]
  4. Neuron. 2010 Jan 28;65(2):150-64 [PMID: 20152123]
  5. Materials (Basel). 2020 Jan 01;13(1): [PMID: 31906325]
  6. Adv Mater. 2021 Jul;33(30):e2101093 [PMID: 34142400]
  7. Sci Adv. 2015 Oct 02;1(9):e1500613 [PMID: 26601297]
  8. Nano Lett. 2020 Dec 9;20(12):8781-8788 [PMID: 33238098]
  9. Adv Mater. 2020 Apr;32(15):e1902045 [PMID: 31373081]
  10. Nature. 2020 Mar;579(7797):32-33 [PMID: 32132685]
  11. Nat Commun. 2021 Mar 19;12(1):1798 [PMID: 33741964]
  12. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  13. ACS Nano. 2021 Jan 26;15(1):1497-1508 [PMID: 33372769]
  14. Nature. 2016 Feb 11;530(7589):144-7 [PMID: 26863965]
  15. Nat Nanotechnol. 2022 Jan;17(1):33-38 [PMID: 34782776]
  16. Nat Nanotechnol. 2019 Aug;14(8):776-782 [PMID: 31308498]
  17. Nat Mater. 2017 Jan;16(1):101-108 [PMID: 27669052]
  18. Adv Mater. 2022 Jun;34(25):e2103376 [PMID: 34510567]
  19. ACS Nano. 2020 Mar 24;14(3):3500-3508 [PMID: 32057230]
  20. Nature. 2003 Jul 3;424(6944):76-81 [PMID: 12808468]
  21. Natl Sci Rev. 2020 Jul 25;8(2):nwaa172 [PMID: 34691573]
  22. Nature. 2020 Jan;577(7792):641-646 [PMID: 31996818]
  23. Trends Biotechnol. 2013 Oct;31(10):562-71 [PMID: 23953722]
  24. Nature. 2020 Mar;579(7797):62-66 [PMID: 32132692]
  25. Nature. 2012 Aug 16;488(7411):304-12 [PMID: 22895335]
  26. IEEE Rev Biomed Eng. 2010;3:169-208 [PMID: 22275207]
  27. Nat Commun. 2017 May 12;8:15199 [PMID: 28497781]
  28. Nat Commun. 2018 Jun 28;9(1):2514 [PMID: 29955057]
  29. Nat Nanotechnol. 2017 Aug;12(8):784-789 [PMID: 28530717]
  30. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  31. Adv Mater. 2018 Feb;30(7): [PMID: 29315837]
  32. Adv Mater. 2020 Sep;32(36):e2002431 [PMID: 32700395]
  33. Sci Adv. 2020 Jun 24;6(26):eaba6173 [PMID: 32637614]
  34. Nanoscale Adv. 2020 Mar 11;2(5):1811-1827 [PMID: 36132530]
  35. Nat Commun. 2018 Nov 30;9(1):5106 [PMID: 30504804]
  36. Adv Mater. 2019 Jul;31(28):e1900682 [PMID: 31090977]
  37. Nanoscale. 2020 Jun 14;12(22):11784-11807 [PMID: 32462161]
  38. Nat Commun. 2021 Mar 31;12(1):1984 [PMID: 33790277]
  39. Science. 2014 Aug 1;345(6196):542-6 [PMID: 25082698]
  40. Science. 2018 Jun 29;360(6396):1447-1451 [PMID: 29954976]
  41. Nanomicro Lett. 2020 Feb 28;12(1):66 [PMID: 34138280]
  42. Small. 2018 Jan;14(3): [PMID: 29171710]
  43. Adv Mater. 2018 Nov;30(44):e1801048 [PMID: 30039629]
  44. Nat Nanotechnol. 2020 Jul;15(7):529-544 [PMID: 32231270]
  45. Neuron. 2013 Apr 24;78(2):325-38 [PMID: 23541902]
  46. Adv Mater. 2018 Nov;30(46):e1803961 [PMID: 30252955]
  47. Science. 2013 Oct 18;342(6156):341-4 [PMID: 24136964]
  48. Chem Rev. 2020 Aug 12;120(15):7867-7918 [PMID: 32786671]
  49. Nat Commun. 2020 Jul 7;11(1):3399 [PMID: 32636385]
  50. Adv Mater. 2018 Mar;30(9): [PMID: 29318659]

Word Cloud

Created with Highcharts 10.0.0visionmachinevisualsystemcaninformationwithincomputingrecentoptoelectronicintelligentBiologicalefficientlyhandleopticalretinacortexbrainsuggestsalternativeapproachupgradingcurrentlow-intelligencelargeenergyconsumptioncomplexcircuitryartificialhigh-performanceedgeapplicationsyearsretinomorphicbasedintegrationimagesensorsprocessorsregardedpromisingcandidateimprovephenomenonnoveltechnologyperformpreprocessingnearevensensorfrontendtherebyreducingtransmissionredundantrawdataimprovingefficiencyback-endprocessorhigh-leveltaskscontributiontrypresentcomprehensivereviewprogressachievedemergentfieldRetinomorphicdevicesArtificialintelligenceComputerscienceDevices

Similar Articles

Cited By