Turnip mosaic virus co-opts the vacuolar sorting receptor VSR4 to promote viral genome replication in plants by targeting viral replication vesicles to the endosome.

Guanwei Wu, Zhaoxing Jia, Kaida Ding, Hongying Zheng, Yuwen Lu, Lin Lin, Jiejun Peng, Shaofei Rao, Aiming Wang, Jianping Chen, Fei Yan
Author Information
  1. Guanwei Wu: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  2. Zhaoxing Jia: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  3. Kaida Ding: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  4. Hongying Zheng: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  5. Yuwen Lu: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  6. Lin Lin: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  7. Jiejun Peng: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  8. Shaofei Rao: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  9. Aiming Wang: London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada.
  10. Jianping Chen: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
  11. Fei Yan: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China. ORCID

Abstract

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.

References

  1. J Exp Bot. 2016 Aug;67(15):4435-49 [PMID: 27262127]
  2. J Cell Sci. 2004 Feb 29;117(Pt 6):943-54 [PMID: 14762108]
  3. J Virol. 2015 Dec;89(24):12441-56 [PMID: 26423955]
  4. Virology. 2017 Oct;510:147-155 [PMID: 28735115]
  5. Glycobiology. 2016 Sep;26(9):926-939 [PMID: 26911286]
  6. Mol Plant Pathol. 2020 Sep;21(9):1194-1211 [PMID: 32686275]
  7. PLoS Pathog. 2015 Mar 06;11(3):e1004742 [PMID: 25748299]
  8. Plant J. 2007 Sep;51(6):1126-36 [PMID: 17666025]
  9. J Virol. 2009 Oct;83(20):10460-71 [PMID: 19656892]
  10. Adv Virus Res. 2015;92:101-99 [PMID: 25701887]
  11. Biosci Biotechnol Biochem. 2016;80(4):694-705 [PMID: 26745465]
  12. J Gen Virol. 2017 Mar;98(3):352-354 [PMID: 28366187]
  13. Plant Physiol. 2006 Nov;142(3):945-62 [PMID: 16980567]
  14. Plant Mol Biol. 2002 Dec;50(6):903-14 [PMID: 12516861]
  15. Plant Cell. 2006 Sep;18(9):2258-74 [PMID: 16905657]
  16. PLoS Pathog. 2014 Apr 24;10(4):e1004087 [PMID: 24763736]
  17. Protoplasma. 2020 Nov;257(6):1725-1729 [PMID: 32780164]
  18. Microsc Microanal. 2010 Dec;16(6):710-24 [PMID: 20946701]
  19. J Virol. 2018 Nov 12;92(23): [PMID: 30258010]
  20. PLoS Pathog. 2016 Feb 10;12(2):e1005443 [PMID: 26863622]
  21. Annu Rev Virol. 2014 Nov;1(1):237-59 [PMID: 26958722]
  22. Nat Commun. 2018 Feb 13;9(1):643 [PMID: 29440677]
  23. Proc Natl Acad Sci U S A. 2021 Jan 5;118(1): [PMID: 33376201]
  24. Curr Opin Cell Biol. 2020 Aug;65:86-95 [PMID: 32247230]
  25. PLoS Pathog. 2018 May 10;14(5):e1007028 [PMID: 29746582]
  26. Plant Cell. 2010 Aug;22(8):2825-37 [PMID: 20807880]
  27. Plant J. 2014 Dec;80(6):977-92 [PMID: 25293377]
  28. Adv Virus Res. 2020;107:37-86 [PMID: 32711734]
  29. Curr Opin Virol. 2012 Dec;2(6):683-90 [PMID: 23123078]
  30. Front Plant Sci. 2018 Feb 01;9:70 [PMID: 29449856]
  31. Nat Protoc. 2007;2(7):1565-72 [PMID: 17585298]
  32. J Virol. 2008 Dec;82(24):12252-64 [PMID: 18842721]
  33. Plant Physiol. 2014 Jun 20;165(4):1417-1423 [PMID: 24951487]
  34. Curr Opin Virol. 2014 Dec;9:104-10 [PMID: 25462441]
  35. Plant J. 2010 Jan;61(2):259-70 [PMID: 19843313]
  36. PLoS Biol. 2016 Oct 19;14(10):e2000128 [PMID: 27760128]
  37. Plant J. 2019 Jun;98(5):783-797 [PMID: 30730076]
  38. PLoS Pathog. 2013;9(10):e1003683 [PMID: 24098128]
  39. Adv Virus Res. 2020;107:133-158 [PMID: 32711728]
  40. Front Microbiol. 2013 Dec 04;4:351 [PMID: 24409170]
  41. Mol Plant. 2016 Jun 6;9(6):774-86 [PMID: 26836198]
  42. Methods Mol Biol. 2015;1242:93-103 [PMID: 25408447]
  43. Plant J. 2020 Jan;101(2):384-400 [PMID: 31562664]
  44. Plant Cell. 2018 Oct;30(10):2594-2615 [PMID: 30150314]
  45. Nat Protoc. 2006;1(2):641-6 [PMID: 17406292]
  46. Science. 2001 Mar 23;291(5512):2364-9 [PMID: 11269317]
  47. New Phytol. 2020 Oct;228(2):622-639 [PMID: 32479643]
  48. Curr Opin Virol. 2021 Jun;48:10-16 [PMID: 33784579]
  49. Plant Cell. 2010 Dec;22(12):3992-4008 [PMID: 21177482]
  50. J Virol. 2016 Dec 16;91(1): [PMID: 27795417]
  51. Nat Plants. 2016 Mar 07;2:16017 [PMID: 27249560]
  52. J Cell Biol. 2012 Nov 12;199(4):583-8 [PMID: 23148232]
  53. PLoS Pathog. 2009 Dec;5(12):e1000705 [PMID: 20041173]
  54. Annu Rev Phytopathol. 2015;53:45-66 [PMID: 25938276]
  55. Annu Rev Phytopathol. 2021 Aug 25;59:1-29 [PMID: 33891829]
  56. EMBO Rep. 2015 Aug;16(8):995-1004 [PMID: 26113364]
  57. Plant Cell. 2017 Mar;29(3):508-525 [PMID: 28223439]
  58. Plant Physiol. 2018 Jan;176(1):483-484 [PMID: 29317525]
  59. Annu Rev Biochem. 2004;73:1019-49 [PMID: 15189166]
  60. Trends Microbiol. 2019 Nov;27(11):906-914 [PMID: 31331665]
  61. Trends Microbiol. 2007 May;15(5):211-8 [PMID: 17398101]
  62. Mol Plant Microbe Interact. 2020 Jan;33(1):26-39 [PMID: 31715107]
  63. Annu Rev Plant Biol. 2018 Apr 29;69:123-145 [PMID: 29561663]
  64. J Integr Plant Biol. 2021 Feb;63(2):353-364 [PMID: 33085164]
  65. Plant Sci. 2018 Sep;274:70-79 [PMID: 30080642]
  66. Curr Protoc Plant Biol. 2018 Mar;3(1):42-50 [PMID: 30040251]
  67. J Virol. 2010 Jan;84(2):799-809 [PMID: 19906931]
  68. Sci China Life Sci. 2020 Mar;63(3):343-363 [PMID: 31707539]
  69. J Microsc. 2004 May;214(Pt 2):159-73 [PMID: 15102063]
  70. J Exp Bot. 2013 Jul;64(10):2817-29 [PMID: 23682115]
  71. Annu Rev Virol. 2017 Sep 29;4(1):123-139 [PMID: 28787582]
  72. Curr Opin Virol. 2021 Jun;48:30-41 [PMID: 33845410]

MeSH Term

Endosomes
Host-Pathogen Interactions
Humans
Plant Diseases
Potyvirus
Vesicular Transport Proteins
Viral Replication Compartments
Virus Replication

Chemicals

Vesicular Transport Proteins

Word Cloud

Created with Highcharts 10.0.0VSR4viralLEreplication6K2infectionTuMVhostrequiredenlargedendosomevesiclesfactorshownTurnipmosaicvirusgenometargetvacuolarsortingreceptornewtargetingmutantEEpathwaytargetedcis-GolgienhancedN-glycosylatedAccumulatedexperimentalevidencevirusesrecruitintracellularmachineryestablishrecentlypotyvirustransitslatestilllargelyunknownlabelledmembraneproteinunderstandunderlyingmechanismstudiedinvolvementVSRfamilyproteinsArabidopsisprocessnowreportidentificationinteractedspecificallyFollowingoverexpressionrecycling-defectiveaccumulatesearlyemployconventionalVSR-mediateddirectlyadditioncanstabilitymonitoringtraffickingnon-glycosylateddissociationleadingformationpunctatebodiesrobustglycosylatedFinallyhijacksprotectsdegradationviaautophagyassistTakentogetherresultsidentifiedendosomesoptimalshedlightroleN-glycosylationregulatingco-optspromoteplants

Similar Articles

Cited By