Natural quantum reservoir computing for temporal information processing.

Yudai Suzuki, Qi Gao, Ken C Pradel, Kenji Yasuoka, Naoki Yamamoto
Author Information
  1. Yudai Suzuki: Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan. yudai.suzuki.sh@gmail.com.
  2. Qi Gao: Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan.
  3. Ken C Pradel: Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan.
  4. Kenji Yasuoka: Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan.
  5. Naoki Yamamoto: Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan.

Abstract

Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics to learn a dynamical system and generate the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.

References

  1. Sci Rep. 2020 Jan 15;10(1):328 [PMID: 31941917]
  2. Nature. 2019 Oct;574(7779):505-510 [PMID: 31645734]
  3. Phys Rev Lett. 2021 Dec 24;127(26):260401 [PMID: 35029475]
  4. Sci Rep. 2020 Sep 7;10(1):14687 [PMID: 32895412]
  5. Phys Rev Lett. 2021 Jun 11;126(23):230502 [PMID: 34170151]
  6. Nature. 2017 Sep 13;549(7671):203-209 [PMID: 28905912]
  7. Nature. 2017 Sep 13;549(7671):195-202 [PMID: 28905917]
  8. IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3148-3155 [PMID: 32735539]
  9. Sci Rep. 2019 Sep 3;9(1):12679 [PMID: 31481737]
  10. J R Soc Interface. 2014 Sep 6;11(98):20140520 [PMID: 24990292]
  11. IEEE Trans Neural Netw. 2006 May;17(3):820-4 [PMID: 16722187]
  12. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  13. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  14. Sci Rep. 2015 May 27;5:10487 [PMID: 26014748]
  15. IEEE Trans Neural Netw. 2000;11(3):697-709 [PMID: 18249797]
  16. Nature. 2017 Jul 26;547(7664):428-431 [PMID: 28748930]
  17. Nat Chem. 2020 Oct;12(10):891-897 [PMID: 32968231]
  18. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  19. Neural Netw. 2008 Mar-Apr;21(2-3):511-23 [PMID: 18222634]
  20. Phys Rev Lett. 2016 Aug 19;117(8):080501 [PMID: 27588839]
  21. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  22. Nature. 2019 Mar;567(7747):209-212 [PMID: 30867609]

Grants

  1. JPMXS0118067285/MEXT Quantum Leap Flagship Program
  2. 20H05966/JSPS KAKENHI

Word Cloud

Created with Highcharts 10.0.0quantumreservoircomputingtemporalinformationprocessingsystemdissipativetime-seriesnaturalnoiseperformanceregressionproblemcomputercomputationReservoirexploitsartificialphysicaldynamicslearndynamicalgeneratetargetpaperproposesuserealsuperconductingdevicespropertyservedaddedbitsdemonstratedbenchmarkpracticalclassifyingdifferentobjectsbasedsensordatacasesproposedshowshigherlinearclassificationmodelresultsindicatenoisydevicepotentiallyfunctionsnotablyundesirableconventionalcanusedrichresourceNatural

Similar Articles

Cited By (5)