Whole-genome sequencing of for prediction of drug resistance.

Luqi Wang, Jinghui Yang, Liang Chen, Weibing Wang, Fangyou Yu, Haiyan Xiong
Author Information
  1. Luqi Wang: Department of Epidemiology, School of Public Health, Fudan University, Shanghai200032, China.
  2. Jinghui Yang: Tuberculosis Microbiology Laboratory, Shanghai Pulmonary Hospital, Shanghai200082, China.
  3. Liang Chen: Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA.
  4. Weibing Wang: Department of Epidemiology, School of Public Health, Fudan University, Shanghai200032, China.
  5. Fangyou Yu: Tuberculosis Microbiology Laboratory, Shanghai Pulmonary Hospital, Shanghai200082, China.
  6. Haiyan Xiong: Department of Epidemiology, School of Public Health, Fudan University, Shanghai200032, China. ORCID

Abstract

Whole-genome sequencing (WGS) has shown tremendous potential in rapid diagnosis of drug-resistant tuberculosis (TB). In the current study, we performed WGS on drug-resistant Mycobacterium tuberculosis isolates obtained from Shanghai (n = 137) and Russia (n = 78). We aimed to characterise the underlying and high-frequency novel drug-resistance-conferring mutations, and also create valuable combinations of resistance mutations with high predictive sensitivity to predict multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) phenotype using a bootstrap method. Most strains belonged to L2.2, L4.2, L4.4, L4.5 and L4.8 lineages. We found that WGS could predict 82.07% of phenotypically drug-resistant domestic strains. The prediction sensitivity for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STR), ofloxacin (OFL), amikacin (AMK) and capreomycin (CAP) was 79.71%, 86.30%, 76.47%, 88.37%, 83.33%, 70.00% and 70.00%, respectively. The mutation combination with the highest sensitivity for MDR prediction was rpoB S450L + rpoB H445A/P + katG S315T + inhA I21T + inhA S94A, with a sensitivity of 92.17% (0.8615, 0.9646), and the mutation combination with highest sensitivity for XDR prediction was rpoB S450L + katG S315T + gyrA D94G + rrs A1401G, with a sensitivity of 92.86% (0.8158, 0.9796). The molecular information presented here will be of particular value for the rapid clinical detection of MDR- and XDR-TB isolates through laboratory diagnosis.

Keywords

References

  1. Nat Ecol Evol. 2018 Dec;2(12):1982-1992 [PMID: 30397300]
  2. J Infect Dis. 2016 Oct 15;214(8):1286-7 [PMID: 27493236]
  3. Antimicrob Agents Chemother. 2006 Mar;50(3):1075-8 [PMID: 16495272]
  4. Sci Rep. 2019 Oct 25;9(1):15354 [PMID: 31653940]
  5. Lancet Infect Dis. 2015 Oct;15(10):1193-1202 [PMID: 26116186]
  6. Tuberc Respir Dis (Seoul). 2017 Apr;80(2):159-168 [PMID: 28416956]
  7. Antimicrob Agents Chemother. 1994 Apr;38(4):773-80 [PMID: 8031045]
  8. J Clin Microbiol. 2010 Jan;48(1):229-37 [PMID: 19864480]
  9. J Med Microbiol. 2004 Feb;53(Pt 2):107-113 [PMID: 14729930]
  10. BMC Infect Dis. 2016 Oct 19;16(1):583 [PMID: 27756241]
  11. Clin Microbiol Infect. 2017 Feb;23(2):61-68 [PMID: 27665704]
  12. Antimicrob Agents Chemother. 2011 Feb;55(2):608-14 [PMID: 20956608]
  13. Clin Infect Dis. 2015 Jul 15;61(2):219-27 [PMID: 25829000]
  14. Syst Biol. 2008 Oct;57(5):758-71 [PMID: 18853362]
  15. J Clin Microbiol. 2001 Jan;39(1):107-10 [PMID: 11136757]
  16. Sci Rep. 2017 Apr 20;7:46327 [PMID: 28425484]
  17. J Clin Microbiol. 2011 Jul;49(7):2625-30 [PMID: 21593257]
  18. Antimicrob Agents Chemother. 2003 Dec;47(12):3799-805 [PMID: 14638486]
  19. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5189-97 [PMID: 27297489]
  20. Antimicrob Agents Chemother. 2005 Aug;49(8):3192-7 [PMID: 16048924]
  21. Science. 2013 Jan 4;339(6115):88-91 [PMID: 23118010]
  22. Sci Rep. 2019 Sep 6;9(1):12823 [PMID: 31492902]
  23. Tuberculosis (Edinb). 2016 Jan;96:102-6 [PMID: 26786661]
  24. Clin Microbiol Rev. 2016 Apr;29(2):239-90 [PMID: 26912567]
  25. Am J Respir Cell Mol Biol. 1994 Dec;11(6):639-43 [PMID: 7946393]
  26. J Clin Microbiol. 2009 Jun;47(6):1767-72 [PMID: 19386845]
  27. Antimicrob Agents Chemother. 2000 Feb;44(2):326-36 [PMID: 10639358]
  28. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  29. J Antimicrob Chemother. 2010 Jul;65(7):1359-67 [PMID: 20427375]
  30. N Engl J Med. 2018 Oct 11;379(15):1403-1415 [PMID: 30280646]
  31. Nat Genet. 2018 Feb;50(2):307-316 [PMID: 29358649]
  32. BMC Infect Dis. 2014 Sep 04;14:479 [PMID: 25186245]
  33. Sci Rep. 2020 Feb 5;10(1):1917 [PMID: 32024860]
  34. Protein Sci. 2010 Mar;19(3):458-74 [PMID: 20054829]
  35. BMC Genomics. 2016 Nov 2;17(1):847 [PMID: 27806686]
  36. Genome Res. 2012 Mar;22(3):568-76 [PMID: 22300766]
  37. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  38. J Clin Microbiol. 2007 Aug;45(8):2635-40 [PMID: 17537937]
  39. Int J Antimicrob Agents. 2019 Aug;54(2):109-116 [PMID: 30981926]
  40. J Clin Microbiol. 2004 Jun;42(6):2425-31 [PMID: 15184414]

MeSH Term

Antitubercular Agents
Bacterial Proteins
China
Drug Resistance, Multiple, Bacterial
Genome, Bacterial
Humans
Microbial Sensitivity Tests
Mutation
Mycobacterium tuberculosis
Phylogeny
Russia
Sensitivity and Specificity
Tuberculosis, Multidrug-Resistant
Whole Genome Sequencing

Chemicals

Antitubercular Agents
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0sensitivity+predictiondrug-resistanttuberculosisL40sequencingWGSresistancerpoBWhole-genomerapiddiagnosisisolatesn=mutationspredictstrains27000%mutationcombinationhighestS450LkatGS315TinhA92showntremendouspotentialTBcurrentstudyperformedMycobacteriumobtainedShanghai137Russia78aimedcharacteriseunderlyinghigh-frequencynoveldrug-resistance-conferringalsocreatevaluablecombinationshighpredictivemultidrug-extensivelyMDR/XDR-TBphenotypeusingbootstrapmethodbelongedL2458lineagesfound8207%phenotypicallydomesticrifampicinRIFisoniazidINHethambutolEMBstreptomycinSTRofloxacinOFLamikacinAMKcapreomycinCAP7971%8630%7647%8837%8333%respectivelyMDRH445A/PI21TS94A17%86159646XDRgyrAD94GrrsA1401G86%81589796molecularinformationpresentedwillparticularvalueclinicaldetectionMDR-XDR-TBlaboratorydrugDrugspecificitywhole-genome

Similar Articles

Cited By