Selection and Validation of Reference Genes for RT-qPCR Normalization in (Diptera: Sciaridae) Under Insecticides Stress.

Haiyan Fu, Tubiao Huang, Cheng Yin, Zhenhua Xu, Chao Li, Chunguang Liu, Tong Wu, Fuqiang Song, Fujuan Feng, Fengshan Yang
Author Information
  1. Haiyan Fu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  2. Tubiao Huang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  3. Cheng Yin: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  4. Zhenhua Xu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  5. Chao Li: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  6. Chunguang Liu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  7. Tong Wu: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  8. Fuqiang Song: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.
  9. Fujuan Feng: College of Life Science, Northeast Forestry University, Harbin, China.
  10. Fengshan Yang: Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.

Abstract

(Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling . However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in , gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [, , , , , , , , and )] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and Δ) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were and across phoxim; and across chlorpyrifos and chlorfluazuron; α and across imidacloprid; α and α across developmental stages; and across larvae; α and across tissues, and and across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on gene function under insecticides stress.

Keywords

References

  1. Insect Sci. 2021 Apr;28(2):533-547 [PMID: 32166878]
  2. Genes (Basel). 2019 Jun 25;10(6): [PMID: 31242713]
  3. BMC Mol Biol. 2009 Jun 09;10:56 [PMID: 19508726]
  4. Genomics. 2020 Sep;112(5):3739-3750 [PMID: 32353477]
  5. Data Brief. 2020 Dec 09;34:106638 [PMID: 33365368]
  6. PLoS One. 2014 Jan 23;9(1):e86503 [PMID: 24466124]
  7. PLoS One. 2014 Oct 30;9(10):e111369 [PMID: 25356721]
  8. J Chem Ecol. 2013 Feb;39(2):243-52 [PMID: 23355016]
  9. Med Vet Entomol. 2010 Jun;24(2):176-81 [PMID: 20604863]
  10. Insects. 2021 Apr 16;12(4): [PMID: 33923730]
  11. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  12. Front Plant Sci. 2016 Nov 08;7:1672 [PMID: 27877186]
  13. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  14. J Insect Physiol. 2011 Jun;57(6):840-50 [PMID: 21435341]
  15. Sci Rep. 2019 Sep 20;9(1):13629 [PMID: 31541183]
  16. Gene. 2020 Jul 30;749:144712 [PMID: 32360412]
  17. Front Physiol. 2021 Apr 14;12:663338 [PMID: 33935809]
  18. Pestic Biochem Physiol. 2020 Feb;163:117-122 [PMID: 31973847]
  19. PLoS One. 2014 Jan 15;9(1):e84730 [PMID: 24454743]
  20. BMC Genomics. 2020 Nov 23;21(1):819 [PMID: 33225897]
  21. J Econ Entomol. 2016 Apr;109(2):879-86 [PMID: 26612891]
  22. Front Physiol. 2018 Nov 06;9:1560 [PMID: 30459641]
  23. PLoS One. 2017 Mar 21;12(3):e0173821 [PMID: 28323834]
  24. Pest Manag Sci. 2021 Jun;77(6):2645-2658 [PMID: 33440063]
  25. Arch Insect Biochem Physiol. 2020 Aug;104(4):e21680 [PMID: 32346914]
  26. Environ Monit Assess. 2021 Jun 5;193(7):382 [PMID: 34089115]
  27. PLoS One. 2017 Jul 26;12(7):e0181862 [PMID: 28746411]
  28. Insects. 2021 Mar 05;12(3): [PMID: 33807991]
  29. PLoS One. 2013 Jul 09;8(7):e68059 [PMID: 23874494]
  30. J Econ Entomol. 2015 Feb;108(1):126-34 [PMID: 26470112]
  31. Bull Entomol Res. 2021 Aug;111(4):454-463 [PMID: 33632348]
  32. Mol Biol Rep. 2020 Jul;47(7):4989-5000 [PMID: 32594344]
  33. Insect Sci. 2017 Apr;24(2):222-234 [PMID: 26749166]
  34. Insects. 2020 Apr 17;11(4): [PMID: 32316461]
  35. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  36. BMC Res Notes. 2013 Oct 11;6:409 [PMID: 24119747]
  37. J Insect Sci. 2012;12:60 [PMID: 22938136]
  38. Front Physiol. 2021 Feb 11;12:619816 [PMID: 33643066]
  39. Chemosphere. 2021 Apr;269:128747 [PMID: 33172670]
  40. Sci Rep. 2018 Feb 9;8(1):2689 [PMID: 29426915]
  41. Sci Rep. 2015 Dec 10;5:18201 [PMID: 26656102]
  42. Int J Biol Sci. 2013 Aug 20;9(8):792-802 [PMID: 23983612]
  43. Insects. 2021 Jun 29;12(7): [PMID: 34209609]
  44. J Econ Entomol. 2020 Feb 8;113(1):451-460 [PMID: 31773146]
  45. Chemosphere. 2021 Nov;283:131205 [PMID: 34147986]
  46. Genomics. 2021 Jul;113(4):1876-1894 [PMID: 33839272]
  47. PLoS One. 2015 Jan 13;10(1):e0115979 [PMID: 25585250]
  48. PLoS One. 2015 Apr 27;10(4):e0125868 [PMID: 25915640]
  49. Genes (Basel). 2020 Dec 25;12(1): [PMID: 33375665]
  50. PLoS One. 2014 Jun 02;9(6):e98164 [PMID: 24887329]
  51. Arch Insect Biochem Physiol. 2021 Sep;108(1):e21831 [PMID: 34240760]
  52. Appl Environ Microbiol. 2015 Jun 15;81(12):4120-9 [PMID: 25862220]
  53. Genes Immun. 2005 Jun;6(4):279-84 [PMID: 15815687]
  54. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  55. BMC Mol Biol. 2009 Jun 01;10:54 [PMID: 19486513]
  56. PLoS One. 2016 Jul 08;11(7):e0159060 [PMID: 27392023]
  57. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  58. PLoS One. 2014 Jan 31;9(1):e87514 [PMID: 24498122]
  59. Ecotoxicology. 2017 Sep;26(7):868-875 [PMID: 28536793]
  60. Biotechnol Lett. 2018 Feb;40(2):227-236 [PMID: 29124515]
  61. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  62. Sci Rep. 2018 Feb 7;8(1):2564 [PMID: 29416091]
  63. Int J Mol Sci. 2016 Jul 07;17(7): [PMID: 27399679]
  64. BMC Mol Biol. 2010 Oct 06;11:76 [PMID: 20923571]

Word Cloud

Created with Highcharts 10.0.0acrossreferencegeneexpressiongenesαinsecticidesusedresultsstressRT-qPCRDiptera:SciaridaeselectioninsecticidestabilityexperimentalconditionsdevelopmentalstagestissuesseriousrootmaggotpestcausessubstantialdamageChinesechiveOrganophosphateOPneonicotinoidwidelychemicalpesticidesplayimportantrolescontrollingHoweverstrongpressurefollowingrepeatedpesticideapplicationsleddevelopmentresistantpopulationsinsectunderstandresistancemechanismanalysismightrequiredAppropriatecriticalprerequisitestudiescanaffectedresultingbiasederroneouspresentstudyshowsprofileninecommonly[]systematicallyanalyzedMoreoveralsoevaluatedincludingsexesFiveprogramsNormFindergeNormBestKeeperRefFinderΔvalidatesuitabilitycandidaterevealedappropriatesetsphoximchlorpyrifoschlorfluazuronimidaclopridlarvaesexwillfacilitatestandardizationcontributeresearchfunctionSelectionValidationReferenceGenesNormalizationInsecticidesStressBradysiaodoriphaganormalization

Similar Articles

Cited By