Cortical Morphological Changes in Congenital Amusia: Surface-Based Analyses.

Xuan Liao, Junjie Sun, Zhishuai Jin, DaXing Wu, Jun Liu
Author Information
  1. Xuan Liao: Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.
  2. Junjie Sun: Department of Radiology, The Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China.
  3. Zhishuai Jin: Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.
  4. DaXing Wu: Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.
  5. Jun Liu: Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.

Abstract

Congenital Amusia (CA) is a rare disorder characterized by deficits in pitch perception, and many structural and functional magnetic resonance imaging studies have been conducted to better understand its neural bases. However, a structural magnetic resonance imaging analysis using a surface-based morphology method to identify regions with cortical features abnormalities at the vertex-based level has not yet been performed. Fifteen participants with CA and 13 healthy controls underwent structural magnetic resonance imaging. A surface-based morphology method was used to identify anatomical abnormalities. Then, the surface parameters' mean value of the identified clusters with statistically significant between-group differences were extracted and compared. Finally, Pearson's correlation analysis was used to assess the correlation between the Montreal Battery of Evaluation of Amusia (MBEA) scores and surface parameters. The CA group had significantly lower MBEA scores than the healthy controls ( = 0.000). The CA group exhibited a significant higher fractal dimension in the right caudal middle frontal gyrus and a lower sulcal depth in the right pars triangularis gyrus ( < 0.05; false discovery rate-corrected at the cluster level) compared to healthy controls. There were negative correlations between the mean fractal dimension values in the right caudal middle frontal gyrus and MBEA score, including the mean MBEA score ( = -0.5398, = 0.0030), scale score ( = -0.5712, = 0.0015), contour score ( = -0.4662, = 0.0124), interval score ( = -0.4564, = 0.0146), rhythmic score ( = -0.5133, = 0.0052), meter score ( = -0.3937, = 0.0382), and memory score ( = -0.3879, = 0.0414). There was a significant positive correlation between the mean sulcal depth in the right pars triangularis gyrus and the MBEA score, including the mean score ( = 0.5130, = 0.0052), scale score ( = 0.5328, = 0.0035), interval score ( = 0.4059, = 0.0321), rhythmic score ( = 0.5733, = 0.0014), meter score ( = 0.5061, = 0.0060), and memory score ( = 0.4001, = 0.0349). Individuals with CA exhibit cortical morphological changes in the right hemisphere. These findings may indicate that the neural basis of speech perception and memory impairments in individuals with CA is associated with abnormalities in the right pars triangularis gyrus and middle frontal gyrus, and that these cortical abnormalities may be a neural marker of CA.

Keywords

References

  1. Prog Brain Res. 2006;156:249-68 [PMID: 17015084]
  2. PLoS One. 2019 Dec 2;14(12):e0225519 [PMID: 31790454]
  3. BMC Neurol. 2021 Sep 3;21(1):335 [PMID: 34479502]
  4. Neuroimage. 2006 Jan 15;29(2):515-23 [PMID: 16169750]
  5. Hum Brain Mapp. 2012 Aug;33(8):1850-67 [PMID: 21692148]
  6. Brain Cogn. 2019 Oct;135:103577 [PMID: 31202155]
  7. Brain. 2006 Oct;129(Pt 10):2562-70 [PMID: 16931534]
  8. Brain Cogn. 2019 Nov;136:103614 [PMID: 31546175]
  9. Cognition. 2020 Oct;203:104337 [PMID: 32516581]
  10. Ann Hum Genet. 1980 May;43(4):369-82 [PMID: 7396411]
  11. J Neurosci. 2016 Mar 9;36(10):2986-94 [PMID: 26961952]
  12. Neuroscience. 2006 Apr 28;139(1):317-25 [PMID: 16324799]
  13. Biomed Res Int. 2014;2014:327270 [PMID: 24701569]
  14. Sci Rep. 2016 Oct 11;6:34911 [PMID: 27725686]
  15. Neuroimage. 2019 Oct 1;199:454-465 [PMID: 31200066]
  16. Ann N Y Acad Sci. 2005 Dec;1060:255-61 [PMID: 16597772]
  17. Neuroimage. 2014 Oct 1;99:281-92 [PMID: 24867353]
  18. Neuron. 2002 Jan 17;33(2):185-91 [PMID: 11804567]
  19. Brain Lang. 2003 Sep;86(3):366-76 [PMID: 12972367]
  20. Hum Brain Mapp. 2011 Jul;32(7):1109-24 [PMID: 20665722]
  21. Neuropsychologia. 2017 Mar;97:18-28 [PMID: 28153640]
  22. Memory. 2010 Aug;18(6):657-69 [PMID: 20706954]
  23. Epilepsia. 2006 May;47(5):921-7 [PMID: 16686658]
  24. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  25. PLoS One. 2012;7(7):e41411 [PMID: 22859982]
  26. Proc SPIE Int Soc Opt Eng. 2013 Mar 13;8669: [PMID: 24357916]
  27. Radiology. 2002 Jun;223(3):672-82 [PMID: 12034934]
  28. Hum Brain Mapp. 2012 Nov;33(11):2521-34 [PMID: 21898679]
  29. Hum Brain Mapp. 2001 Aug;13(4):239-52 [PMID: 11410952]
  30. Neuroimage. 2006 Feb 15;29(4):1224-30 [PMID: 16223589]
  31. Ann N Y Acad Sci. 2001 Jun;930:153-65 [PMID: 11458826]
  32. PLoS One. 2018 Sep 21;13(9):e0204397 [PMID: 30240453]
  33. Hum Brain Mapp. 2006 Dec;27(12):994-1003 [PMID: 16671080]
  34. Sci Rep. 2016 Jan 06;6:18861 [PMID: 26732511]
  35. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Oct 3;79(Pt B):67-76 [PMID: 28624581]
  36. Ann N Y Acad Sci. 2003 Nov;999:58-75 [PMID: 14681118]
  37. PLoS One. 2017 Aug 22;12(8):e0183151 [PMID: 28829808]
  38. Brain Res. 2016 Jun 1;1640(Pt B):251-63 [PMID: 26505915]
  39. J Neurosci. 2007 Nov 21;27(47):13028-32 [PMID: 18032676]
  40. Hum Brain Mapp. 2012 Feb;33(2):360-72 [PMID: 21391272]
  41. Brain Lang. 2021 Apr;215:104908 [PMID: 33578176]
  42. J Neurophysiol. 2016 Jul 1;116(1):88-97 [PMID: 27009161]
  43. PLoS One. 2013;8(2):e55977 [PMID: 23418488]
  44. Neuropsychologia. 2010 Jul;48(9):2630-9 [PMID: 20471406]
  45. PLoS One. 2016 Jul 25;11(7):e0159835 [PMID: 27455078]
  46. Cephalalgia. 2011 Oct;31(14):1452-8 [PMID: 21911412]
  47. Clin Linguist Phon. 2021 Feb 1;35(2):101-116 [PMID: 31986915]
  48. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):19027-32 [PMID: 23112175]
  49. Neuroimage. 2005 May 1;25(4):1256-65 [PMID: 15850743]
  50. Cortex. 2017 Apr;89:120-134 [PMID: 28284849]
  51. Cereb Cortex. 2011 Feb;21(2):292-9 [PMID: 20494966]
  52. J Exp Psychol Learn Mem Cogn. 2020 Feb;46(2):201-233 [PMID: 31246058]
  53. Neuropsychologia. 2016 Jul 1;87:74-84 [PMID: 27157883]
  54. J Neuroimaging. 2011 Apr;21(2):e134-47 [PMID: 20412393]
  55. PLoS One. 2016 Jan 20;11(1):e0146684 [PMID: 26789126]
  56. Front Psychol. 2020 Jul 07;11:1411 [PMID: 32733321]
  57. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  58. Restor Neurol Neurosci. 2007;25(3-4):323-34 [PMID: 17943009]
  59. Behav Brain Res. 2011 Nov 20;225(1):341-7 [PMID: 21729721]
  60. Neuroimage Clin. 2014 Oct 05;6:370-8 [PMID: 25379450]
  61. Neuropsychologia. 2015 Jan;66:111-8 [PMID: 25445781]
  62. Hum Brain Mapp. 2005 May;25(1):46-59 [PMID: 15846822]
  63. Neuropsychology. 2018 Oct;32(7):880-894 [PMID: 30047757]
  64. Neuropsychologia. 2016 Oct;91:50-60 [PMID: 27449707]
  65. Mem Cognit. 2012 Oct;40(7):1109-21 [PMID: 22549878]
  66. Brain. 2010 Jun;133(Pt 6):1682-93 [PMID: 20418275]
  67. Eur J Hum Genet. 2017 May;25(5):625-630 [PMID: 28224991]
  68. Behav Brain Res. 2021 Jul 23;410:113340 [PMID: 33945830]
  69. Brain Cogn. 2016 Feb;102:13-25 [PMID: 26685089]
  70. J Neurophysiol. 2021 Jun 1;125(6):2038-2053 [PMID: 33881914]
  71. J Acoust Soc Am. 2016 Jul;140(1):563 [PMID: 27475178]
  72. Neuroimage Clin. 2020;25:102131 [PMID: 31911343]
  73. Neuroimage. 2013 Jan 15;65:336-48 [PMID: 23041529]
  74. Neural Regen Res. 2021 Mar;16(3):531-536 [PMID: 32985483]
  75. Neuropsychologia. 2019 Feb 18;124:87-97 [PMID: 30625291]
  76. Neuropsychologia. 2021 Jun 18;156:107833 [PMID: 33757844]
  77. Neuropsychologia. 2017 May;99:213-224 [PMID: 28315696]
  78. J Cogn Neurosci. 2008 Mar;20(3):541-52 [PMID: 18004944]
  79. Front Hum Neurosci. 2015 Apr 01;9:161 [PMID: 25883562]
  80. Ann N Y Acad Sci. 2009 Jul;1169:441-5 [PMID: 19673821]
  81. Sci Rep. 2018 Feb 28;8(1):3822 [PMID: 29491454]
  82. Front Hum Neurosci. 2017 Sep 29;11:473 [PMID: 29033806]
  83. Hum Brain Mapp. 2014 Jul;35(7):3052-65 [PMID: 24123491]

Word Cloud

Created with Highcharts 10.0.0=0scoregyrusCA-0rightmeanMBEAstructuralmagneticresonanceimagingabnormalitiesmiddlefrontalparstriangularisneuralsurface-basedmorphologycorticalhealthycontrolssignificantcorrelationmemoryCongenitalamusiaperceptionanalysismethodidentifylevelusedsurfacecomparedscoresgrouplowerfractaldimensioncaudalsulcaldepthincludingscaleintervalrhythmic0052metermayraredisordercharacterizeddeficitspitchmanyfunctionalstudiesconductedbetterunderstandbasesHoweverusingregionsfeaturesvertex-basedyetperformedFifteenparticipants13underwentanatomicalparameters'valueidentifiedclustersstatisticallybetween-groupdifferencesextractedFinallyPearson'sassessMontrealBatteryEvaluationAmusiaparameterssignificantly000exhibitedhigher<05falsediscoveryrate-correctedclusternegativecorrelationsvalues5398003057120015contour466201244564014651333937038238790414positive51305328003540590321573300145061006040010349IndividualsexhibitmorphologicalchangeshemispherefindingsindicatebasisspeechimpairmentsindividualsassociatedmarkerCorticalMorphologicalChangesAmusia:Surface-BasedAnalysescongenitalmusicdiscrimination

Similar Articles

Cited By