Integrative Lipidomics and Metabolomics for System-Level Understanding of the Metabolic Syndrome in Long-Term Treated HIV-Infected Individuals.

Sofie Olund Villumsen, Rui Benfeitas, Andreas Dehlbæk Knudsen, Marco Gelpi, Julie Høgh, Magda Teresa Thomsen, Daniel Murray, Henrik Ullum, Ujjwal Neogi, Susanne Dam Nielsen
Author Information
  1. Sofie Olund Villumsen: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
  2. Rui Benfeitas: National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
  3. Andreas Dehlbæk Knudsen: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
  4. Marco Gelpi: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
  5. Julie Høgh: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
  6. Magda Teresa Thomsen: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
  7. Daniel Murray: Personalized Medicine of Infectious Complications in Immune Deficiency (PERSIMUNE), Rigshospitalet, Copenhagen, Denmark.
  8. Henrik Ullum: Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark.
  9. Ujjwal Neogi: The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden.
  10. Susanne Dam Nielsen: Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.

Abstract

People living with HIV (PLWH) require life-long anti-retroviral treatment and often present with comorbidities such as metabolic syndrome (MetS). Systematic lipidomic characterization and its association with the metabolism are currently missing. We included 100 PLWH with MetS and 100 without MetS from the Copenhagen Comorbidity in HIV Infection (COCOMO) cohort to examine whether and how lipidome profiles are associated with MetS in PLWH. We combined several standard biostatistical, machine learning, and network analysis techniques to investigate the lipidome systematically and comprehensively and its association with clinical parameters. Additionally, we generated weighted lipid-metabolite networks to understand the relationship between lipidomic profiles with those metabolites associated with MetS in PLWH. The lipidomic dataset consisted of 917 lipid species including 602 glycerolipids, 228 glycerophospholipids, 61 sphingolipids, and 26 steroids. With a consensus approach using four different statistical and machine learning methods, we observed 13 differentially abundant lipids between PLWH without MetS and PLWH with MetS, which mainly belongs to diacylglyceride (DAG, n = 2) and triacylglyceride (TAG, n = 11). The comprehensive network integration of the lipidomics and metabolomics data suggested interactions between specific glycerolipids' structural composition patterns and key metabolites involved in glutamate metabolism. Further integration of the clinical data with metabolomics and lipidomics resulted in the association of visceral adipose tissue (VAT) and exposure to earlier generations of antiretroviral therapy (ART). Our integrative omics data indicated disruption of glutamate and fatty acid metabolism, suggesting their involvement in the pathogenesis of PLWH with MetS. Alterations in the lipid homeostasis and glutaminolysis need clinical interventions to prevent accelerated aging in PLWH with MetS.

Keywords

References

  1. PLoS One. 2009 Jul 15;4(7):e6261 [PMID: 19603071]
  2. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  3. JAMA Cardiol. 2019 Dec 1;4(12):1239-1249 [PMID: 31642867]
  4. Anal Chim Acta. 2015 Jul 23;885:1-16 [PMID: 26231889]
  5. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  6. Circulation. 2014 May 6;129(18):1821-31 [PMID: 24622385]
  7. J Clin Invest. 2011 Apr;121(4):1402-11 [PMID: 21403394]
  8. BMC Infect Dis. 2016 Nov 26;16(1):713 [PMID: 27887644]
  9. Biochim Biophys Acta. 2000 Jun 26;1486(1):1-17 [PMID: 10856709]
  10. BMC Infect Dis. 2011 Sep 20;11:246 [PMID: 21933422]
  11. J Lipid Res. 2012 Aug;53(8):1690-700 [PMID: 22645248]
  12. Circ Cardiovasc Genet. 2014 Dec;7(6):941-54 [PMID: 25516624]
  13. J Proteome Res. 2015 Aug 7;14(8):3322-35 [PMID: 26088811]
  14. Clin Infect Dis. 2018 Aug 1;67(4):579-586 [PMID: 29471519]
  15. J Infect Dis. 2020 Jan 14;221(3):419-427 [PMID: 31538186]
  16. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  17. Curr Opin Lipidol. 2011 Jun;22(3):210-5 [PMID: 21378565]
  18. Hepatology. 2010 Jul;52(1):115-25 [PMID: 20564379]
  19. Commun Biol. 2022 Jan 11;5(1):27 [PMID: 35017663]
  20. J Genet Genomics. 2020 Feb 20;47(2):69-83 [PMID: 32178981]
  21. Diabetes Metab Res Rev. 2015 Jul;31(5):453-75 [PMID: 25139820]
  22. Aging (Albany NY). 2021 Oct 11;13(19):22732-22751 [PMID: 34635603]
  23. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  24. PLoS One. 2018 Aug 29;13(8):e0202944 [PMID: 30157268]
  25. Gigascience. 2019 Jun 1;8(6): [PMID: 31141612]
  26. Metabolomics. 2019 Jun 13;15(6):93 [PMID: 31197497]
  27. Curr Protoc Bioinformatics. 2019 Dec;68(1):e86 [PMID: 31756036]
  28. Front Immunol. 2019 Aug 27;10:1965 [PMID: 31507593]

MeSH Term

Aging
Cohort Studies
Female
Glycerophospholipids
HIV Infections
Humans
Lipid Metabolism
Lipidomics
Longitudinal Studies
Male
Metabolic Syndrome
Metabolomics
Middle Aged
Sphingolipids

Chemicals

Glycerophospholipids
Sphingolipids

Word Cloud

Created with Highcharts 10.0.0MetSPLWHlipidomicassociationmetabolismmachinelearningclinicallipidomicsdataHIVtreatmentmetabolicsyndrome100withoutlipidomeprofilesassociatednetworkmetaboliteslipidn=integrationmetabolomicsglutamateantiretroviralPeoplelivingrequirelife-longanti-retroviraloftenpresentcomorbiditiesSystematiccharacterizationcurrentlymissingincludedCopenhagenComorbidityInfectionCOCOMOcohortexaminewhethercombinedseveralstandardbiostatisticalanalysistechniquesinvestigatesystematicallycomprehensivelyparametersAdditionallygeneratedweightedlipid-metabolitenetworksunderstandrelationshipdatasetconsisted917speciesincluding602glycerolipids228glycerophospholipids61sphingolipids26steroidsconsensusapproachusingfourdifferentstatisticalmethodsobserved13differentiallyabundantlipidsmainlybelongsdiacylglycerideDAG2triacylglycerideTAG11comprehensivesuggestedinteractionsspecificglycerolipids'structuralcompositionpatternskeyinvolvedresultedvisceraladiposetissueVATexposureearliergenerationstherapyARTintegrativeomicsindicateddisruptionfattyacidsuggestinginvolvementpathogenesisAlterationshomeostasisglutaminolysisneedinterventionspreventacceleratedagingIntegrativeLipidomicsMetabolomicsSystem-LevelUnderstandingMetabolicSyndromeLong-TermTreatedHIV-InfectedIndividualsHIV-1

Similar Articles

Cited By