Unraveling the complex genetic basis of growth in New Zealand silver trevally (Pseudocaranx georgianus).

Noemie Valenza-Troubat, Sara Montanari, Peter Ritchie, Maren Wellenreuther
Author Information
  1. Noemie Valenza-Troubat: Seafood Production Group, The New Zealand Institute for Plant & Food Research Ltd, Nelson 7010, New Zealand. ORCID
  2. Sara Montanari: Seafood Production Group, The New Zealand Institute for Plant & Food Research Ltd, Nelson 7010, New Zealand. ORCID
  3. Peter Ritchie: School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand. ORCID
  4. Maren Wellenreuther: Seafood Production Group, The New Zealand Institute for Plant & Food Research Ltd, Nelson 7010, New Zealand. ORCID

Abstract

Growth directly influences production rate and therefore is one of the most important and well-studied traits in animal breeding. However, understanding the genetic basis of growth has been hindered by its typically complex polygenic architecture. Here, we performed quantitative trait locus mapping and genome-wide association studies for 10 growth traits that were observed over 2 years in 1,100 F1 captive-bred trevally (Pseudocaranx georgianus). We constructed the first high-density linkage map for trevally, which included 19,861 single nucleotide polymorphism markers, and discovered 8 quantitative trait loci for height, length, and weight on linkage groups 3, 14, and 18. Using genome-wide association studies, we further identified 113 single nucleotide polymorphism-trait associations, uncovering 10 genetic hot spots involved in growth. Two of the markers found in the genome-wide association studies colocated with the quantitative trait loci previously mentioned, demonstrating that combining quantitative trait locus mapping and genome-wide association studies represents a powerful approach for the identification and validation of loci controlling complex traits. This is the first study of its kind for trevally. Our findings provide important insights into the genetic architecture of growth in this species and supply a basis for fine mapping quantitative trait loci, genomic selection, and further detailed functional analysis of the genes underlying growth in trevally.

Keywords

References

  1. Nat Genet. 2021 Feb;53(2):185-194 [PMID: 33462484]
  2. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  3. Bioinformatics. 2003 May 1;19(7):889-90 [PMID: 12724300]
  4. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  5. Bioinformatics. 2013 Dec 15;29(24):3128-34 [PMID: 24078685]
  6. Mol Ecol. 2013 Jun;22(11):3124-40 [PMID: 23701397]
  7. Mar Biotechnol (NY). 2020 Apr;22(2):153-166 [PMID: 31927644]
  8. BMC Genet. 2020 Feb 7;21(1):13 [PMID: 32033538]
  9. Mol Ecol Resour. 2017 Sep;17(5):1009-1024 [PMID: 28271620]
  10. PLoS Genet. 2021 Jan 25;17(1):e1008748 [PMID: 33493157]
  11. Mol Ecol Resour. 2018 Jul;18(4):729-738 [PMID: 29782705]
  12. Front Genet. 2018 Mar 13;9:82 [PMID: 29593780]
  13. BMC Genomics. 2015 Nov 18;16:969 [PMID: 26582102]
  14. Oecologia. 1986 Aug;70(1):136-139 [PMID: 28311299]
  15. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):629-640 [PMID: 34492338]
  16. Annu Rev Genet. 2001;35:303-39 [PMID: 11700286]
  17. Mol Ecol. 2021 Sep;30(18):4505-4519 [PMID: 34228841]
  18. Genet Sel Evol. 2010 Jun 04;42:17 [PMID: 20525320]
  19. Front Genet. 2020 Jul 10;11:677 [PMID: 32754193]
  20. Evol Appl. 2022 Jan 22;15(2):237-248 [PMID: 35233245]
  21. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  22. Genetics. 1996 Jan;142(1):285-94 [PMID: 8770605]
  23. Trends Genet. 2013 Apr;29(4):206-14 [PMID: 23261029]
  24. Trends Genet. 2016 Mar;32(3):155-164 [PMID: 26806794]
  25. Curr Opin Genet Dev. 2002 Apr;12(2):130-6 [PMID: 11893484]
  26. Front Genet. 2018 Apr 17;9:127 [PMID: 29719550]
  27. Theor Appl Genet. 2011 Feb;122(3):623-32 [PMID: 21042793]
  28. Biol Rev Camb Philos Soc. 2011 Feb;86(1):97-116 [PMID: 20394607]
  29. G3 (Bethesda). 2019 Apr 9;9(4):1027-1035 [PMID: 30804023]
  30. Sci Rep. 2014 Dec 01;4:7256 [PMID: 25435025]
  31. Mar Biotechnol (NY). 2020 Aug;22(4):526-538 [PMID: 32424479]
  32. BMC Genomics. 2021 Nov 2;22(1):785 [PMID: 34727894]
  33. Genetics. 2010 Jun;185(2):623-31 [PMID: 20308278]
  34. PLoS Genet. 2016 Feb 01;12(2):e1005767 [PMID: 26828793]
  35. Mol Ecol. 2017 Mar;26(6):1465-1476 [PMID: 28001319]
  36. Genomics Inform. 2012 Jun;10(2):117-22 [PMID: 23105939]
  37. BMC Genomics. 2017 Jun 6;18(1):446 [PMID: 28587594]
  38. Front Genet. 2019 Feb 01;10:27 [PMID: 30774649]
  39. Evol Appl. 2021 Jul 30;15(4):591-602 [PMID: 35505891]
  40. J Hered. 2002 Jan-Feb;93(1):77-8 [PMID: 12011185]

MeSH Term

Animals
Chromosome Mapping
Fishes
Genetic Linkage
Genome-Wide Association Study
New Zealand
Phenotype
Polymorphism, Single Nucleotide
Quantitative Trait Loci

Word Cloud

Created with Highcharts 10.0.0growthquantitativetraitgenome-wideassociationstudiestrevallygeneticlocitraitsbasiscomplexmappinglinkageimportantbreedingarchitecturelocus10PseudocaranxgeorgianusfirstmapsinglenucleotidemarkersgenomicGrowthdirectlyinfluencesproductionratethereforeonewell-studiedanimalHoweverunderstandinghinderedtypicallypolygenicperformedobserved2years1100F1captive-bredconstructedhigh-densityincluded19861polymorphismdiscovered8heightlengthweightgroups31418Usingidentified113polymorphism-traitassociationsuncoveringhotspotsinvolvedTwofoundcolocatedpreviouslymentioneddemonstratingcombiningrepresentspowerfulapproachidentificationvalidationcontrollingstudykindfindingsprovideinsightsspeciessupplyfineselectiondetailedfunctionalanalysisgenesunderlyingUnravelingNewZealandsilverGenPredQTLpredictionselectiveshareddataresource

Similar Articles

Cited By (5)