Balancing Statistical Power and Risk in HIV Cure Clinical Trial Design.

Jillian S Y Lau, Deborah Cromer, Mykola Pinkevych, Sharon R Lewin, Thomas A Rasmussen, James H McMahon, Miles P Davenport
Author Information
  1. Jillian S Y Lau: Department of Infectious Diseases, Alfred Hospital, Prahran, Australia. ORCID
  2. Deborah Cromer: Infection Analytics Program, Kirby Institute, University of New South Wales, Sydney, Australia.
  3. Mykola Pinkevych: Infection Analytics Program, Kirby Institute, University of New South Wales, Sydney, Australia.
  4. Sharon R Lewin: Department of Infectious Diseases, Alfred Hospital, Prahran, Australia.
  5. Thomas A Rasmussen: Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
  6. James H McMahon: Department of Infectious Diseases, Alfred Hospital, Prahran, Australia.
  7. Miles P Davenport: Infection Analytics Program, Kirby Institute, University of New South Wales, Sydney, Australia.

Abstract

BACKGROUND: Analytical treatment interruptions (ATI) are pauses of antiretroviral therapy (ART) in the context of human immunodeficiency virus (HIV) cure trials. They are the gold standard in determining if interventions being tested can achieve sustained virological control in the absence of ART. However, withholding ART comes with risks and discomforts to trial participant. We used mathematical models to explore how ATI study design can be improved to maximize statistical power, while minimizing risks to participants.
METHODS: Using previously observed dynamics of time to viral rebound (TVR) post-ATI, we modelled estimates for optimal sample size, frequency, and ATI duration required to detect a significant difference in the TVR between control and intervention groups. Groups were compared using a log-rank test, and analytical and stochastic techniques.
RESULTS: In placebo-controlled TVR studies, 120 participants are required in each arm to detect 30% difference in frequency of viral reactivation at 80% power. There was little statistical advantage to measuring viral load more frequently than weekly, or interrupting ART beyond 5 weeks in a TVR study.
CONCLUSIONS: Current TVR HIV cure studies are underpowered to detect statistically significant changes in frequency of viral reactivation. Alternate study designs can improve the statistical power of ATI trials.

Keywords

References

  1. J Infect Dis. 2019 Jul 2;220(220 Suppl 1):S24-S26 [PMID: 31264691]
  2. Lancet HIV. 2014 Oct;1(1):e13-21 [PMID: 26423811]
  3. J Infect Dis. 2018 Nov 5;218(12):1954-1963 [PMID: 30085241]
  4. N Engl J Med. 2016 Sep 1;375(9):830-9 [PMID: 27424812]
  5. J Acquir Immune Defic Syndr. 2006 Jun;42(2):192-202 [PMID: 16688094]
  6. J Virol. 2017 Nov 30;91(24): [PMID: 29021399]
  7. AIDS. 2003 Jan 24;17(2):195-9 [PMID: 12545079]
  8. PLoS Pathog. 2015 Jul 02;11(7):e1005000 [PMID: 26133551]
  9. HIV Med. 2017 Apr;18(4):256-266 [PMID: 27578404]
  10. N Engl J Med. 2016 Nov 24;375(21):2037-2050 [PMID: 27959728]
  11. PLoS Pathog. 2013 Mar;9(3):e1003211 [PMID: 23516360]
  12. J Infect Dis. 2019 Jul 2;220(220 Suppl 1):S1-S4 [PMID: 31264687]
  13. PLoS Pathog. 2018 Jan 11;14(1):e1006792 [PMID: 29324842]
  14. Medicine (Baltimore). 2018 Oct;97(43):e13016 [PMID: 30412140]
  15. PLoS Comput Biol. 2019 Jul 24;15(7):e1007229 [PMID: 31339888]
  16. AIDS. 2016 Jan;30(2):185-92 [PMID: 26691546]
  17. J Infect Dis. 2020 Apr 27;221(10):1740-1742 [PMID: 31742347]
  18. Lancet HIV. 2018 Aug;5(8):e438-e447 [PMID: 30025681]
  19. Antivir Ther. 2012;17(6):1001-9 [PMID: 22865544]
  20. Lancet Infect Dis. 2014 Apr;14(4):291-300 [PMID: 24525316]
  21. J Infect Dis. 2019 Jul 2;220(220 Suppl 1):S5-S6 [PMID: 30779842]
  22. Lancet. 2019 Jun 15;393(10189):2428-2438 [PMID: 31056293]
  23. Arch Intern Med. 2012 Sep 10;172(16):1252-5 [PMID: 22826124]
  24. Curr Opin HIV AIDS. 2018 Sep;13(5):402-407 [PMID: 29878914]
  25. J Virus Erad. 2020 Feb 20;6(1):34-37 [PMID: 32175090]
  26. AIDS. 2019 Apr 1;33(5):773-791 [PMID: 30883388]
  27. J Virol. 2018 May 29;92(12): [PMID: 29593048]
  28. Sci Transl Med. 2017 Dec 6;9(419): [PMID: 29212716]
  29. Lancet HIV. 2019 Apr;6(4):e259-e268 [PMID: 30885693]
  30. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15109-14 [PMID: 10611346]
  31. J Infect Dis. 2019 Jul 2;220(220 Suppl 1):S16-S18 [PMID: 30860581]
  32. Nature. 2018 Sep;561(7724):479-484 [PMID: 30258136]
  33. J Clin Invest. 2018 Jul 2;128(7):3102-3115 [PMID: 29911997]

MeSH Term

Anti-Retroviral Agents
Clinical Trials as Topic
HIV Infections
Humans
Research Design
Risk Assessment
Viral Load
Withholding Treatment

Chemicals

Anti-Retroviral Agents

Word Cloud

Created with Highcharts 10.0.0HIVviralTVRATIARTcurecanstudystatisticalpowerfrequencydetecttreatmenttrialscontrolrisksparticipantsreboundrequiredsignificantdifferenceanalyticalstudiesreactivationBACKGROUND:AnalyticalinterruptionspausesantiretroviraltherapycontexthumanimmunodeficiencyvirusgoldstandarddetermininginterventionstestedachievesustainedvirologicalabsenceHoweverwithholdingcomesdiscomfortstrialparticipantusedmathematicalmodelsexploredesignimprovedmaximizeminimizingMETHODS:Usingpreviouslyobserveddynamicstimepost-ATImodelledestimatesoptimalsamplesizedurationinterventiongroupsGroupscomparedusinglog-rankteststochastictechniquesRESULTS:placebo-controlled120arm30%80%littleadvantagemeasuringloadfrequentlyweeklyinterruptingbeyond5weeksCONCLUSIONS:CurrentunderpoweredstatisticallychangesAlternatedesignsimproveBalancingStatisticalPowerRiskCureClinicalTrialDesigninfectioninterruptionmodellingposttreatmentcontrollers

Similar Articles

Cited By