Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors.

Sam R J Hoare, Paul H Tewson, Shivani Sachdev, Mark Connor, Thomas E Hughes, Anne Marie Quinn
Author Information
  1. Sam R J Hoare: Pharmechanics LLC, Owego, NY, United States.
  2. Paul H Tewson: Montana Molecular, Bozeman, MT, United States.
  3. Shivani Sachdev: Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.
  4. Mark Connor: Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.
  5. Thomas E Hughes: Montana Molecular, Bozeman, MT, United States.
  6. Anne Marie Quinn: Montana Molecular, Bozeman, MT, United States.

Abstract

Neurons integrate inputs over different time and space scales. Fast excitatory synapses at boutons (ms and μm), and slow modulation over entire dendritic arbors (seconds and mm) are all ultimately combined to produce behavior. Understanding the timing of signaling events mediated by G-protein-coupled receptors is necessary to elucidate the mechanism of action of therapeutics targeting the nervous system. Measuring signaling kinetics in live cells has been transformed by the adoption of fluorescent biosensors and dyes that convert biological signals into optical signals that are conveniently recorded by microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling has now become routine with the application of equations in familiar curve fitting software to estimate the rates of signaling from the waveform. Here we describe examples of the application of these methods, including (1) Kinetic analysis of opioid signaling dynamics and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying the signaling activity of illicit synthetic cannabinoid receptor agonists measured using a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin functions from analysis of biosensor waveforms and quantification of the rates of these processes. These examples show how temporal analysis provides additional dimensions to enhance the understanding of GPCR signaling and therapeutic mechanisms in the nervous system.

Keywords

References

  1. J Biol Chem. 1999 Oct 22;274(43):31076-86 [PMID: 10521508]
  2. Sci Signal. 2011 Aug 9;4(185):ra51 [PMID: 21868357]
  3. Biomed Pharmacother. 2021 Sep;141:111800 [PMID: 34175819]
  4. J Pharmacol Exp Ther. 2000 Mar;292(3):1127-34 [PMID: 10688632]
  5. Curr Opin Cell Biol. 2015 Aug;35:137-43 [PMID: 26057614]
  6. Handb Exp Pharmacol. 2018;252:191-226 [PMID: 30105473]
  7. Curr Opin Struct Biol. 2021 Aug;69:142-149 [PMID: 34048988]
  8. Sci Adv. 2020 Sep 11;6(37): [PMID: 32917711]
  9. Nat Struct Mol Biol. 2018 Jun;25(6):538-545 [PMID: 29872229]
  10. Science. 1968 Jul 5;161(3836):57-9 [PMID: 4298142]
  11. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):93-8 [PMID: 11134505]
  12. Science. 1996 Jan 19;271(5247):363-6 [PMID: 8553074]
  13. Sci Rep. 2020 Feb 4;10(1):1766 [PMID: 32019973]
  14. FASEB J. 1987 Nov;1(5):365-74 [PMID: 3315805]
  15. iScience. 2019 Apr 26;14:47-57 [PMID: 30925410]
  16. J Biol Chem. 2001 Jun 1;276(22):19452-60 [PMID: 11279203]
  17. Trends Pharmacol Sci. 2011 Sep;32(9):521-33 [PMID: 21680031]
  18. Trends Pharmacol Sci. 2008 Mar;29(3):159-65 [PMID: 18262662]
  19. Pharmacol Rev. 2017 Jul;69(3):256-297 [PMID: 28626043]
  20. Mol Pharmacol. 2018 Sep;94(3):992-1006 [PMID: 29954837]
  21. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13069-13074 [PMID: 27799542]
  22. Nat Chem Biol. 2014 Sep;10(9):700-6 [PMID: 25271346]
  23. Trends Pharmacol Sci. 2018 Feb;39(2):148-157 [PMID: 29054309]
  24. Pharmacol Rev. 2001 Mar;53(1):1-24 [PMID: 11171937]
  25. Cell. 2017 Nov 16;171(5):1165-1175.e13 [PMID: 29149605]
  26. Methods Mol Biol. 2021;2268:249-274 [PMID: 34085274]
  27. J Biol Chem. 1999 Nov 5;274(45):32248-57 [PMID: 10542263]
  28. Br J Pharmacol. 2020 Aug;177(15):3449-3463 [PMID: 32293708]
  29. Cell. 2019 Nov 27;179(6):1289-1305.e21 [PMID: 31761534]
  30. MMWR Morb Mortal Wkly Rep. 2021 Feb 12;70(6):202-207 [PMID: 33571180]
  31. Annu Rev Physiol. 2007;69:451-82 [PMID: 17037978]
  32. Nat Methods. 2013 Feb;10(2):162-70 [PMID: 23314171]
  33. J Biol Chem. 1993 Aug 15;268(23):16879-82 [PMID: 8349577]
  34. Mol Pharmacol. 2020 Oct;98(4):425-432 [PMID: 32198210]
  35. J Biol Chem. 1989 May 15;264(14):8171-8 [PMID: 2498308]
  36. J Physiol. 1909 Dec 23;39(5):361-73 [PMID: 16992989]
  37. Cell. 2020 Mar 19;180(6):1041-1043 [PMID: 32169216]
  38. Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:587-608 [PMID: 33411579]
  39. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1601-6 [PMID: 11171997]
  40. Traffic. 2019 Feb;20(2):130-136 [PMID: 30578610]
  41. Nature. 1996 Oct 3;383(6599):447-50 [PMID: 8837779]
  42. J Biol Chem. 2013 Feb 1;288(5):3265-74 [PMID: 23235155]
  43. SLAS Discov. 2018 Oct;23(9):898-906 [PMID: 29991302]
  44. Br J Pharmacol. 2020 Apr;177(7):1472-1484 [PMID: 31975518]
  45. J Biol Chem. 1999 Apr 16;274(16):10999-1006 [PMID: 10196181]
  46. Sci Rep. 2017 Apr 13;7:46380 [PMID: 28406179]
  47. Br J Pharmacol. 2019 Jul;176(14):2593-2607 [PMID: 30945265]
  48. J Biol Chem. 2000 Jun 9;275(23):17596-604 [PMID: 10747877]
  49. Nature. 2014 Aug 14;512(7513):218-222 [PMID: 25043026]
  50. Neurosignals. 2005;14(6):290-302 [PMID: 16772732]
  51. J Biomol Screen. 2014 Feb;19(2):223-31 [PMID: 23989451]
  52. Cell. 2019 Jan 24;176(3):448-458.e12 [PMID: 30639101]
  53. Chem Rev. 2018 Dec 26;118(24):11707-11794 [PMID: 30550275]
  54. Science. 1990 Jun 22;248(4962):1547-50 [PMID: 2163110]
  55. Drug Test Anal. 2021 Jul;13(7):1412-1429 [PMID: 33908179]
  56. Pharmacol Ther. 2021 Jul 10;:107961 [PMID: 34256067]
  57. Cell. 2020 Dec 23;183(7):1986-2002.e26 [PMID: 33333022]
  58. Cell Signal. 2021 Apr;80:109906 [PMID: 33383156]
  59. J Biomol Screen. 2013 Mar;18(3):269-76 [PMID: 23015017]
  60. Mol Pharmacol. 2010 Oct;78(4):756-66 [PMID: 20647394]
  61. J Biomol Screen. 2016 Mar;21(3):298-305 [PMID: 26657040]
  62. ACS Chem Neurosci. 2016 Sep 21;7(9):1241-54 [PMID: 27421060]
  63. J Neurosci. 1998 Apr 15;18(8):2834-41 [PMID: 9526000]
  64. ACS Chem Biol. 2009 Apr 17;4(4):249-60 [PMID: 19193052]
  65. Drug Discov Today. 2007 May;12(9-10):396-403 [PMID: 17467576]
  66. Annu Rev Pharmacol Toxicol. 1998;38:289-319 [PMID: 9597157]
  67. Br J Pharmacol. 2006 Jan;147 Suppl 1:S9-16 [PMID: 16402126]
  68. J Biol Chem. 2006 Jul 21;281(29):20577-88 [PMID: 16687412]
  69. Annu Rev Biochem. 1987;56:615-49 [PMID: 3113327]
  70. J Biol Chem. 2001 May 18;276(20):17442-7 [PMID: 11278476]
  71. Proc R Soc Lond B Biol Sci. 1983 Dec 22;220(1219):141-62 [PMID: 6141562]
  72. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15281-15292 [PMID: 32546520]
  73. Drug Test Anal. 2021 Jul;13(7):1402-1411 [PMID: 33769699]
  74. J Neurosci. 1995 Oct;15(10):6552-61 [PMID: 7472417]
  75. J Theor Biol. 2018 Jun 7;446:168-204 [PMID: 29486201]
  76. ACS Pharmacol Transl Sci. 2019 Jan 03;2(1):9-17 [PMID: 32219213]
  77. Nature. 2021 Sep;597(7875):245-249 [PMID: 34433964]
  78. Mol Pharmacol. 2012 Aug;82(2):178-88 [PMID: 22553358]
  79. Eur J Biochem. 1995 Sep 1;232(2):464-72 [PMID: 7556195]
  80. Nat Methods. 2013 May;10(5):413-20 [PMID: 23524393]
  81. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174-8 [PMID: 3006038]
  82. Clin Neuropharmacol. 1993 Feb;16(1):1-18 [PMID: 8093680]
  83. Eur J Pharmacol. 2018 Mar 15;823:96-104 [PMID: 29408093]
  84. Science. 2011 Sep 30;333(6051):1888-91 [PMID: 21903779]
  85. Cell Rep. 2017 Sep 5;20(10):2294-2303 [PMID: 28877465]
  86. Nat Chem Biol. 2009 Oct;5(10):734-42 [PMID: 19701185]
  87. Nat Chem Biol. 2020 Aug;16(8):841-849 [PMID: 32367019]
  88. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1442-7 [PMID: 15671181]
  89. Neuron. 2018 Jun 6;98(5):963-976.e5 [PMID: 29754753]
  90. Pharmacol Rev. 2012 Apr;64(2):299-336 [PMID: 22407612]
  91. Pharmacol Rev. 2010 Jun;62(2):305-30 [PMID: 20427692]
  92. Nature. 2020 Jul;583(7818):862-866 [PMID: 32555462]
  93. Cell. 2016 Aug 11;166(4):907-919 [PMID: 27499021]
  94. Nat Struct Mol Biol. 2019 Dec;26(12):1123-1131 [PMID: 31740855]
  95. Pharmacol Ther. 2006 Jun;110(3):465-502 [PMID: 16460808]
  96. Mol Pharmacol. 2020 Oct;98(4):410-424 [PMID: 32665252]
  97. Br J Pharmacol. 2021 Oct;178(19):3997-4004 [PMID: 34031869]
  98. Br J Pharmacol. 2008 Mar;153 Suppl 1:S167-76 [PMID: 18193069]
  99. Handb Exp Pharmacol. 2018;252:165-190 [PMID: 29980914]
  100. Br J Pharmacol. 2019 Dec;176(24):4653-4665 [PMID: 31412133]
  101. Cell Mol Life Sci. 2019 Nov;76(22):4413-4421 [PMID: 31422444]
  102. Elife. 2021 Feb 08;10: [PMID: 33555255]
  103. Br J Pharmacol. 2011 Oct;164(4):1322-34 [PMID: 21434879]
  104. Br J Pharmacol. 2010 Nov;161(6):1250-65 [PMID: 20977466]
  105. Cell. 2017 Jul 27;170(3):457-469.e13 [PMID: 28753425]
  106. EMBO Rep. 2005 Apr;6(4):334-40 [PMID: 15776020]
  107. J Pharmacol Exp Ther. 2015 Sep;354(3):328-39 [PMID: 26105953]
  108. Elife. 2016 Jun 14;5: [PMID: 27300105]
  109. Trends Pharmacol Sci. 2020 Dec;41(12):947-959 [PMID: 33097283]
  110. Annu Rev Biophys Bioeng. 1979;8:47-68 [PMID: 383007]
  111. Biochem Pharmacol. 2016 Aug 1;113:70-87 [PMID: 27286929]
  112. Nature. 2015 Jul 30;523(7562):561-7 [PMID: 26200343]
  113. Nature. 2016 Mar 31;531(7596):661-4 [PMID: 27007855]
  114. Front Pharmacol. 2019 Feb 19;10:125 [PMID: 30837883]
  115. Biochem Pharmacol. 2019 Dec;170:113647 [PMID: 31585071]
  116. J Physiol. 1926 Aug 6;61(4):530-46 [PMID: 16993813]
  117. Cell Res. 2019 Dec;29(12):971-983 [PMID: 31776446]
  118. Sci Rep. 2020 Jul 23;10(1):12263 [PMID: 32704081]
  119. J Pharmacol Exp Ther. 2018 May;365(2):437-446 [PMID: 29549157]
  120. Anal Biochem. 1980 Sep 1;107(1):220-39 [PMID: 6254391]
  121. Nature. 2020 Mar;579(7798):297-302 [PMID: 31945772]
  122. Forensic Sci Rev. 2013 Mar;25(1-2):7-26 [PMID: 26226848]
  123. EMBO Rep. 2020 Sep 3;21(9):e49886 [PMID: 32715625]
  124. Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 [PMID: 4202581]
  125. Br J Pharmacol Chemother. 1959 Mar;14(1):48-58 [PMID: 13651579]
  126. J Biol Chem. 2000 Jul 28;275(30):23120-6 [PMID: 10770944]
  127. J Biol Chem. 2006 Nov 24;281(47):36411-9 [PMID: 17008309]
  128. J Biol Chem. 2000 Jun 2;275(22):17201-10 [PMID: 10748214]
  129. Forensic Toxicol. 2016;34:329-343 [PMID: 27429655]
  130. N Engl J Med. 2017 Jan 19;376(3):235-242 [PMID: 27973993]
  131. Anal Chem. 2016 Dec 6;88(23):11476-11485 [PMID: 27779402]
  132. Nat Commun. 2016 Feb 24;7:10842 [PMID: 26905976]
  133. Science. 2018 Jun 29;360(6396): [PMID: 29853555]
  134. N Engl J Med. 2015 Jul 9;373(2):103-7 [PMID: 26154784]
  135. Mol Pharmacol. 2007 Jan;71(1):47-60 [PMID: 17012621]
  136. Sci Signal. 2020 Mar 31;13(625): [PMID: 32234959]
  137. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12309-12314 [PMID: 29087309]
  138. Science. 2012 Aug 31;337(6098):1047-9 [PMID: 22936764]
  139. J Theor Biol. 2018 Apr 7;442:44-65 [PMID: 29337260]
  140. SLAS Discov. 2021 Apr;26(4):570-578 [PMID: 33402011]
  141. Cell. 2020 Dec 23;183(7):1813-1825.e18 [PMID: 33296703]
  142. J Gen Physiol. 2004 Jun;123(6):663-83 [PMID: 15173220]
  143. Nature. 2013 Jun 13;498(7453):190-7 [PMID: 23739333]
  144. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1448-53 [PMID: 15671180]

Grants

  1. R43 GM125390/NIGMS NIH HHS
  2. R44 DA050357/NIDA NIH HHS
  3. R44 GM125390/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0signalingQuantifyinganalysisarrestintimingnervoussystemkineticsfluorescentbiosensorssignalsapplicationratesexamplesopioiddynamicspartialmeasuredusingcannabinoidreceptorbiosensorGPCRNeuronsintegrateinputsdifferenttimespacescalesFastexcitatorysynapsesboutonsmsμmslowmodulationentiredendriticarborssecondsmmultimatelycombinedproducebehaviorUnderstandingeventsmediatedG-protein-coupledreceptorsnecessaryelucidatemechanismactiontherapeuticstargetingMeasuringlivecellstransformedadoptiondyesconvertbiologicalopticalconvenientlyrecordedmicroscopicimagingfluorescenceplatereadersnowbecomeroutineequationsfamiliarcurvefittingsoftwareestimatewaveformdescribemethodsincluding1KineticagonismcAMP2activityillicitsyntheticagonistsmembranepotentialdye3DemonstrationmultiplicityfunctionswaveformsquantificationprocessesshowtemporalprovidesadditionaldimensionsenhanceunderstandingtherapeuticmechanismsKineticsSignalingArrestinRecruitmentNervousSystemG-ProteinCoupledReceptorsGproteincoupledagonist

Similar Articles

Cited By (8)