A behavioural correlate of the synaptic eligibility trace in the nucleus accumbens.

Kenji Yamaguchi, Yoshitomo Maeda, Takeshi Sawada, Yusuke Iino, Mio Tajiri, Ryosuke Nakazato, Shin Ishii, Haruo Kasai, Sho Yagishita
Author Information
  1. Kenji Yamaguchi: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  2. Yoshitomo Maeda: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  3. Takeshi Sawada: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  4. Yusuke Iino: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  5. Mio Tajiri: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  6. Ryosuke Nakazato: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  7. Shin Ishii: International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  8. Haruo Kasai: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
  9. Sho Yagishita: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. yagishita-tky@umin.ac.jp.

Abstract

Reward reinforces the association between a preceding sensorimotor event and its outcome. Reinforcement learning (RL) theory and recent brain slice studies explain the delayed reward action such that synaptic activities triggered by sensorimotor events leave a synaptic eligibility trace for 1 s. The trace produces a sensitive period for reward-related dopamine to induce synaptic plasticity in the nucleus accumbens (NAc). However, the contribution of the synaptic eligibility trace to behaviour remains unclear. Here we examined a reward-sensitive period to brief pure tones with an accurate measurement of an effective timing of water reward in head-fixed Pavlovian conditioning, which depended on the plasticity-related signaling in the NAc. We found that the reward-sensitive period was within 1 s after the pure tone presentation and optogenetically-induced presynaptic activities at the NAc, showing that the short reward-sensitive period was in conformity with the synaptic eligibility trace in the NAc. These findings support the application of the synaptic eligibility trace to construct biologically plausible RL models.

References

  1. Brain Res. 1985 Dec 16;359(1-2):113-9 [PMID: 4075139]
  2. Nat Neurosci. 2018 Aug;21(8):1072-1083 [PMID: 30038277]
  3. PLoS Comput Biol. 2013 Apr;9(4):e1003024 [PMID: 23592970]
  4. Neuron. 2001 Dec 20;32(6):1149-64 [PMID: 11754844]
  5. Elife. 2019 Nov 11;8: [PMID: 31709980]
  6. Neuron. 2015 Oct 21;88(2):298-305 [PMID: 26439527]
  7. Q J Exp Psychol B. 1996 Nov;49(4):346-56 [PMID: 8962539]
  8. J Exp Psychol Anim Behav Process. 1980 Apr;6(2):155-74 [PMID: 7373230]
  9. Nat Neurosci. 2021 Nov;24(11):1586-1600 [PMID: 34663958]
  10. Nature. 2011 Jun 29;475(7356):377-80 [PMID: 21716290]
  11. J Neurosci. 2000 Oct 15;20(20):7737-42 [PMID: 11027236]
  12. J Neurosci. 2012 Apr 18;32(16):5549-52 [PMID: 22514316]
  13. Elife. 2015 Oct 30;4: [PMID: 26516682]
  14. Nat Protoc. 2006;1(3):1412-28 [PMID: 17406430]
  15. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12174-9 [PMID: 9342382]
  16. Science. 2017 Sep 8;357(6355):1033-1036 [PMID: 28883072]
  17. Nat Neurosci. 2017 May;20(5):735-742 [PMID: 28368385]
  18. Nature. 2015 Sep 10;525(7568):243-6 [PMID: 26322583]
  19. Nat Rev Neurosci. 2018 Feb 16;19(3):166-180 [PMID: 29449713]
  20. Nat Neurosci. 2018 Nov;21(11):1574-1582 [PMID: 30349104]
  21. Nat Commun. 2016 Nov 16;7:13480 [PMID: 27848967]
  22. Neuron. 2017 Apr 5;94(1):37-47.e5 [PMID: 28318784]
  23. J Exp Psychol Anim Behav Process. 1994 Apr;20(2):199-209 [PMID: 8189188]
  24. Nat Neurosci. 2016 May;19(5):742-748 [PMID: 27043290]
  25. Nature. 2017 Mar 2;543(7643):103-107 [PMID: 28225752]
  26. J Comp Physiol A. 1985 Sep;157(2):263-77 [PMID: 3939242]
  27. Neuroimage. 2008 Jun;41(2):636-47 [PMID: 18413289]
  28. Trends Neurosci. 1988 Apr;11(4):128-35 [PMID: 2469180]
  29. Nat Neurosci. 2020 Feb;23(2):209-216 [PMID: 31932769]
  30. J Neurosci. 2015 Jul 8;35(27):9946-56 [PMID: 26156995]
  31. Neuron. 2010 Jun 24;66(6):896-907 [PMID: 20620875]
  32. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  33. Cell. 2016 Jan 28;164(3):526-37 [PMID: 26824660]
  34. Neuron. 2015 Nov 4;88(3):528-38 [PMID: 26593091]
  35. Cell. 2021 May 13;184(10):2733-2749.e16 [PMID: 33861952]
  36. J Neurosci. 1986 Jun;6(6):1695-701 [PMID: 3712005]
  37. J Neurosci. 1990 Jun;10(6):1906-11 [PMID: 2355257]
  38. Front Neural Circuits. 2018 Jul 31;12:53 [PMID: 30108488]
  39. J Neurosci. 2005 Jun 29;25(26):6235-42 [PMID: 15987953]
  40. Nature. 2020 Mar;579(7800):555-560 [PMID: 32214250]
  41. Nat Rev Neurosci. 2021 Jul;22(7):407-422 [PMID: 34050339]
  42. Nat Neurosci. 2013 Jul;16(7):966-73 [PMID: 23708143]
  43. Nucleic Acids Res. 2011 Apr;39(8):e49 [PMID: 21288882]
  44. Neuron. 2016 Apr 6;90(1):177-90 [PMID: 26971947]
  45. Nat Commun. 2017 Aug 24;8(1):334 [PMID: 28839128]
  46. Sci Rep. 2020 Nov 2;10(1):18860 [PMID: 33139778]
  47. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  48. J Neurosci. 2017 Mar 8;37(10):2723-2733 [PMID: 28167674]
  49. PLoS Comput Biol. 2020 Jul 23;16(7):e1008078 [PMID: 32701987]
  50. J Neurosci. 2002 Feb 1;22(3):1063-71 [PMID: 11826135]
  51. Nat Neurosci. 2008 Oct;11(10):1177-84 [PMID: 18794840]
  52. Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2726-31 [PMID: 26831103]

MeSH Term

Acoustic Stimulation
Animals
Behavior, Animal
Conditioning, Classical
Cues
Drinking
Male
Mice, Transgenic
Neuronal Plasticity
Nucleus Accumbens
Optogenetics
Reward
Synapses
Synaptic Transmission
Time Factors