Platelet Mechanobiology Inspired Microdevices: From Hematological Function Tests to Disease and Drug Screening.

Yingqi Zhang, Fengtao Jiang, Yunfeng Chen, Lining Arnold Ju
Author Information
  1. Yingqi Zhang: School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia.
  2. Fengtao Jiang: School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia.
  3. Yunfeng Chen: The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States.
  4. Lining Arnold Ju: School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia.

Abstract

Platelet function tests are essential to profile platelet dysfunction and dysregulation in hemostasis and thrombosis. Clinically they provide critical guidance to the patient management and therapeutic evaluation. Recently, the biomechanical effects induced by hemodynamic and contractile forces on platelet functions attracted increasing attention. Unfortunately, the existing platelet function tests on the market do not sufficiently incorporate the topical platelet mechanobiology at play. Besides, they are often expensive and bulky systems that require large sample volumes and long processing time. To this end, numerous novel microfluidic technologies emerge to mimic vascular anatomies, incorporate hemodynamic parameters and recapitulate platelet mechanobiology. These miniaturized and cost-efficient microfluidic devices shed light on high-throughput, rapid and scalable platelet function testing, hematological disorder profiling and antiplatelet drug screening. Moreover, the existing antiplatelet drugs often have suboptimal efficacy while incurring several adverse bleeding side effects on certain individuals. Encouraged by a few microfluidic systems that are successfully commercialized and applied to clinical practices, the microfluidics that incorporate platelet mechanobiology hold great potential as handy, efficient, and inexpensive point-of-care tools for patient monitoring and therapeutic evaluation. Hereby, we first summarize the conventional and commercially available platelet function tests. Then we highlight the recent advances of platelet mechanobiology inspired microfluidic technologies. Last but not least, we discuss their future potential of microfluidics as point-of-care tools for platelet function test and antiplatelet drug screening.

Keywords

References

  1. Diab Vasc Dis Res. 2020 Jan-Feb;17(1):1479164120903044 [PMID: 32037878]
  2. Nat Commun. 2018 Mar 14;9(1):1087 [PMID: 29540687]
  3. Stroke. 2021 Jul;52(7):2478-2482 [PMID: 33914590]
  4. Nat Rev Cardiol. 2018 Mar;15(3):181-191 [PMID: 29297508]
  5. Front Pharmacol. 2021 Mar 22;12:606245 [PMID: 33841141]
  6. Br J Anaesth. 2016 Sep;117 Suppl 2:ii74-ii84 [PMID: 27566810]
  7. Front Physiol. 2018 Jan 25;9:36 [PMID: 29422871]
  8. Biofabrication. 2020 Aug 10;12(4):045009 [PMID: 32650321]
  9. Lab Chip. 2017 Jul 25;17(15):2595-2608 [PMID: 28660968]
  10. Platelets. 2020 Oct 2;31(7):932-938 [PMID: 31878831]
  11. Pathophysiol Haemost Thromb. 2006;35(1-2):83-8 [PMID: 16855351]
  12. Stroke Vasc Neurol. 2020 Jun;5(2):185-197 [PMID: 32606086]
  13. J Atheroscler Thromb. 2013;20(7):630-45 [PMID: 23739624]
  14. Lab Chip. 2008 Sep;8(9):1486-95 [PMID: 18818803]
  15. J Mol Med (Berl). 2006 Dec;84(12):989-95 [PMID: 17013658]
  16. N Engl J Med. 2021 Oct 28;385(18):1680-1689 [PMID: 34379914]
  17. Semin Thromb Hemost. 2012 Nov;38(8):884-92 [PMID: 22930343]
  18. Soft Matter. 2019 Feb 27;15(9):2009-2019 [PMID: 30724316]
  19. Platelets. 2021 Jul 4;32(5):690-696 [PMID: 33561381]
  20. Br J Haematol. 1974 Jan;26(1):117-28 [PMID: 4853110]
  21. Lab Chip. 2021 Aug 21;21(16):3128-3136 [PMID: 34180491]
  22. Br J Haematol. 2008 Oct;143(2):180-90 [PMID: 18783400]
  23. Vox Sang. 2011 Jul;101(1):1-9 [PMID: 21668862]
  24. Circ Res. 2018 Jan 19;122(2):337-351 [PMID: 29348254]
  25. Nat Mater. 2019 Jul;18(7):760-769 [PMID: 30911119]
  26. Biosensors (Basel). 2015 Aug 13;5(3):577-601 [PMID: 26287254]
  27. Anal Chem. 2012 Jan 17;84(2):487-515 [PMID: 22221172]
  28. Diagnostics (Basel). 2021 Jan 29;11(2): [PMID: 33573079]
  29. Heart. 2009 Aug;95(15):1225-9 [PMID: 18697805]
  30. J Clin Med. 2020 Mar 12;9(3): [PMID: 32178287]
  31. Thromb Res. 2010 May;125(5):e234-9 [PMID: 20053425]
  32. Nat Commun. 2020 Oct 29;11(1):5468 [PMID: 33122656]
  33. Obes Rev. 2012 Jan;13(1):27-42 [PMID: 21917110]
  34. Br J Clin Pharmacol. 2007 Apr;63(4):421-30 [PMID: 17076696]
  35. Nat Med. 2002 Nov;8(11):1227-34 [PMID: 12411949]
  36. Crit Care. 2014 Sep 27;18(5):518 [PMID: 25261079]
  37. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1357-62 [PMID: 23288905]
  38. Haematologica. 2017 Jul;102(7):1150-1160 [PMID: 28411253]
  39. Platelets. 2010;21(3):221-8 [PMID: 20158381]
  40. Am J Cardiol. 2007 Aug 1;100(3):417-24 [PMID: 17659921]
  41. J Exp Med. 2006 Mar 20;203(3):493-5 [PMID: 16533890]
  42. Cardiovasc Revasc Med. 2011 Sep-Oct;12(5):312-22 [PMID: 21036109]
  43. Br J Haematol. 2010 Feb;148(3):416-27 [PMID: 19863535]
  44. Blood Adv. 2021 Oct 12;5(19):3839-3849 [PMID: 34478498]
  45. Ann Biomed Eng. 2013 Jun;41(6):1279-96 [PMID: 23400312]
  46. J R Soc Interface. 2017 May;14(130): [PMID: 28539480]
  47. Br J Haematol. 2011 Oct;155(1):30-44 [PMID: 21790527]
  48. Vasc Health Risk Manag. 2015 Feb 18;11:133-48 [PMID: 25733843]
  49. Clin Med (Lond). 2016 Apr;16(2):152-60 [PMID: 27037385]
  50. J Clin Med. 2020 Aug 13;9(8): [PMID: 32823782]
  51. Clin Appl Thromb Hemost. 2012 Mar-Apr;18(2):140-9 [PMID: 22009986]
  52. Lab Chip. 2010 Feb 7;10(3):291-302 [PMID: 20091000]
  53. Hematol Oncol Clin North Am. 2013 Jun;27(3):411-41 [PMID: 23714306]
  54. J Clin Invest. 2012 Jan;122(1):408-18 [PMID: 22156199]
  55. Thromb Haemost. 2010 Jan;103(1):29-33 [PMID: 20062927]
  56. Anesth Analg. 2016 Dec;123(6):1372-1379 [PMID: 27224934]
  57. Cardiovasc Hematol Disord Drug Targets. 2010 Sep 1;10(3):224-33 [PMID: 20678066]
  58. Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1821-8 [PMID: 27417583]
  59. Elife. 2016 Jul 19;5: [PMID: 27434669]
  60. Transfus Med Hemother. 2013 Apr;40(2):73-86 [PMID: 23653569]
  61. Biomed Microdevices. 2016 Aug;18(4):73 [PMID: 27464497]
  62. Am J Cardiovasc Dis. 2012;2(3):171-83 [PMID: 22937487]
  63. Nat Mater. 2011 Jan;10(1):61-6 [PMID: 21131961]
  64. JAMA. 1983 Sep 2;250(9):1201-9 [PMID: 6348329]
  65. Nat Commun. 2016 Jan 06;7:10176 [PMID: 26733371]
  66. Cell. 1996 Jan 26;84(2):289-97 [PMID: 8565074]
  67. J Thromb Haemost. 2010 Feb;8(2):250-6 [PMID: 19943882]
  68. Biotechnol Bioeng. 2011 Dec;108(12):2978-87 [PMID: 21702026]
  69. ACS Omega. 2021 Jan 22;6(4):3164-3172 [PMID: 33553932]
  70. Sci Rep. 2021 Mar 25;11(1):6875 [PMID: 33767279]
  71. Nat Commun. 2017 Aug 23;8(1):324 [PMID: 28831047]
  72. Lab Chip. 2021 Oct 26;21(21):4104-4117 [PMID: 34523623]
  73. Nat Mater. 2017 Feb;16(2):230-235 [PMID: 27723740]
  74. N Engl J Med. 2021 Jun 10;384(23):2254-2256 [PMID: 33861524]
  75. Micromachines (Basel). 2019 Nov 14;10(11): [PMID: 31739604]
  76. Nat Med. 2009 Jun;15(6):665-73 [PMID: 19465929]
  77. Anal Chem. 2019 Aug 20;91(16):10830-10839 [PMID: 31343155]
  78. Platelets. 2014;25(5):337-42 [PMID: 23971989]
  79. Transfus Med Rev. 2012 Jan;26(1):1-13 [PMID: 21872428]
  80. Lab Chip. 2013 May 21;13(10):1883-91 [PMID: 23549358]
  81. Nat Rev Dis Primers. 2021 Apr 29;7(1):30 [PMID: 33927200]
  82. Br J Anaesth. 2012 May;108(5):754-62 [PMID: 22311365]
  83. Blood. 2008 Jul 1;112(1):90-9 [PMID: 18310501]
  84. Arterioscler Thromb Vasc Biol. 2012 Dec;32(12):2938-45 [PMID: 23087356]
  85. Lab Chip. 2008 Dec;8(12):2046-53 [PMID: 19023467]
  86. Haemophilia. 2015 Sep;21(5):646-52 [PMID: 25753785]
  87. J Biol Chem. 2001 Mar 2;276(9):6703-10 [PMID: 11084040]
  88. Blood. 2020 Sep 10;136(11):1317-1329 [PMID: 32573711]
  89. Blood. 2020 Apr 9;135(15):1270-1280 [PMID: 32077913]
  90. Curr Opin Pharmacol. 2009 Oct;9(5):580-8 [PMID: 19775937]
  91. Gastroenterol Hepatol (N Y). 2012 Aug;8(8):513-20 [PMID: 23293564]
  92. Lab Chip. 2012 Jun 21;12(12):2118-34 [PMID: 22344520]
  93. Cell Mol Bioeng. 2017 Feb;10(1):16-29 [PMID: 28580033]
  94. Langmuir. 2016 Mar 22;32(11):2820-8 [PMID: 26910300]
  95. Blood. 2003 Dec 1;102(12):4006-13 [PMID: 12881300]
  96. Platelets. 2017 Jul;28(5):434-440 [PMID: 28580870]
  97. Blood. 1985 Aug;66(2):423-7 [PMID: 3160414]
  98. Platelets. 2017 Jul;28(5):457-462 [PMID: 28102731]
  99. Biomicrofluidics. 2020 Sep 29;14(5):054103 [PMID: 33014235]
  100. Haemophilia. 2015 Sep;21(5):642-5 [PMID: 25982239]
  101. Circulation. 2014 Apr 1;129(13):1407-14 [PMID: 24493817]
  102. Nat Med. 2007 Sep;13(9):1086-95 [PMID: 17721545]
  103. Thromb Res. 2008;122(3):336-45 [PMID: 18155752]
  104. Front Cardiovasc Med. 2021 Nov 25;8:766513 [PMID: 34901226]
  105. J Vis Exp. 2019 Apr 25;(146): [PMID: 31081814]
  106. Nat Commun. 2019 May 3;10(1):2051 [PMID: 31053712]
  107. Lab Chip. 2017 Aug 8;17(16):2785-2792 [PMID: 28717801]
  108. Commun Biol. 2020 Jun 4;3(1):281 [PMID: 32499608]
  109. Sci Rep. 2020 Oct 29;10(1):18604 [PMID: 33122712]
  110. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):325-330 [PMID: 29269394]
  111. Am J Hematol. 2021 May 1;96(5):534-537 [PMID: 33606296]
  112. Thromb Res. 2011 Mar;127(3):235-41 [PMID: 21172720]
  113. Clin Appl Thromb Hemost. 2018 Nov;24(8):1199-1207 [PMID: 30041546]
  114. Blood. 1990 Nov 15;76(10):2017-23 [PMID: 2242424]
  115. Methods Mol Biol. 2006;321:199-225 [PMID: 16508074]
  116. Anesth Analg. 2008 May;106(5):1366-75 [PMID: 18420846]
  117. J Biol Chem. 1986 Sep 5;261(25):11585-91 [PMID: 3745157]
  118. Semin Cardiothorac Vasc Anesth. 2017 Sep;21(3):206-211 [PMID: 28758557]
  119. Nat Commun. 2019 Mar 13;10(1):1204 [PMID: 30867419]
  120. J Biol Chem. 2017 Jun 2;292(22):9204-9217 [PMID: 28416610]
  121. Res Pract Thromb Haemost. 2018 Aug 23;2(4):736-750 [PMID: 30349893]
  122. Thromb Haemost. 2013 May;109(5):808-16 [PMID: 23254993]
  123. Blood Transfus. 2019 May;17(3):181-190 [PMID: 30747706]
  124. Sci Rep. 2020 Apr 27;10(1):7045 [PMID: 32341418]
  125. Br J Haematol. 1997 Mar;96(3):458-63 [PMID: 9054648]
  126. Annu Rev Biomed Eng. 2018 Jun 4;20:253-275 [PMID: 29865873]
  127. Nano Lett. 2018 Aug 8;18(8):4803-4811 [PMID: 29911385]
  128. J Am Coll Cardiol. 2013 Dec 17;62(24):2261-73 [PMID: 24076493]
  129. Thromb Res. 1988 Sep 1;51(5):533-41 [PMID: 3175991]
  130. Int J Mol Sci. 2020 Dec 11;21(24): [PMID: 33322373]
  131. Clin Lab Haematol. 2002 Aug;24(4):225-32 [PMID: 12181026]
  132. J Thromb Haemost. 2009 Apr;7(4):676-84 [PMID: 19143930]
  133. Nat Commun. 2014 Jul 16;5:4257 [PMID: 25027852]
  134. J Am Heart Assoc. 2015 May 26;4(5): [PMID: 26015325]
  135. Circ Res. 2021 Sep 3;129(6):631-646 [PMID: 34293929]

Grants

  1. R00 HL153678/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0plateletfunctionmechanobiologymicrofluidictestsincorporateantiplateletmicrofluidicsPlateletthrombosispatienttherapeuticevaluationeffectshemodynamicexistingoftensystemstechnologiesdrugscreeningpotentialpoint-of-caretoolsessentialprofiledysfunctiondysregulationhemostasisClinicallyprovidecriticalguidancemanagementRecentlybiomechanicalinducedcontractileforcesfunctionsattractedincreasingattentionUnfortunatelymarketsufficientlytopicalplayBesidesexpensivebulkyrequirelargesamplevolumeslongprocessingtimeendnumerousnovelemergemimicvascularanatomiesparametersrecapitulateminiaturizedcost-efficientdevicesshedlighthigh-throughputrapidscalabletestinghematologicaldisorderprofilingMoreoverdrugssuboptimalefficacyincurringseveraladversebleedingsidecertainindividualsEncouragedsuccessfullycommercializedappliedclinicalpracticesholdgreathandyefficientinexpensivemonitoringHerebyfirstsummarizeconventionalcommerciallyavailablehighlightrecentadvancesinspiredLastleastdiscussfuturetestMechanobiologyInspiredMicrodevices:HematologicalFunctionTestsDiseaseDrugScreeningCOVID-19aspirinclopidogrelvonWillebranddisease

Similar Articles

Cited By