Thrombospondin-1, Platelet Factor 4, and Galectin-1 Are Associated with Engraftment in Patients with Sickle Cell Disease who Underwent Haploidentical Hematopoietic Stem Cell Transplantation.

Ahmad Shaikh, Purevdorj B Olkhanud, Arunakumar Gangaplara, Abdoul Kone, Sajni Patel, Marjan Gucek, Courtney D Fitzhugh
Author Information
  1. Ahmad Shaikh: Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biology, The Catholic University of America, Washington, DC; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia.
  2. Purevdorj B Olkhanud: Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
  3. Arunakumar Gangaplara: Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
  4. Abdoul Kone: Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
  5. Sajni Patel: Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
  6. Marjan Gucek: Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
  7. Courtney D Fitzhugh: Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland. Electronic address: courtney.fitzhugh@nih.gov.

Abstract

Sickle cell disease (SCD) is an inherited red blood cell disorder that leads to significant morbidity and early mortality. The most widely available curative approach remains allogeneic hematopoietic stem cell transplantation (HSCT). HLA-haploidentical (haplo) HSCT expands the donor pool considerably and is a practical alternative for these patients, but traditionally with an increased risk of allograft rejection. Biomarkers in patient plasma could potentially help predict HSCT outcome and allow treatment at an early stage to reverse or prevent graft rejection. Reliable, noninvasive methods to predict engraftment or rejection early after HSCT are needed. We sought to detect variations in the plasma proteomes of patients who engrafted compared with those who rejected their grafts. We used a mass spectrometry-based proteomics approach to identify candidate biomarkers associated with engraftment and rejection by comparing plasma samples obtained from 9 engrafted patients and 10 patients who experienced graft rejection. A total of 1378 proteins were identified, 45 of which were differentially expressed in the engrafted group compared with the rejected group. Based on bioinformatics analysis results, information from the literature, and immunoassay availability, 7 proteins-thrombospondin-1 (Tsp-1), platelet factor 4 (Pf-4), talin-1, moesin, cell division control protein 42 homolog (CDC42), galectin-1 (Gal-1), and CD9-were selected for further analysis. We compared these protein concentrations among 35 plasma samples (engrafted, n = 9; rejected, n = 10; healthy volunteers, n = 8; nontransplanted SCD, n = 8). ELISA analysis confirmed the significant up-regulation of Tsp-1, Pf-4, and Gal-1 in plasma samples from engrafted patients compared with rejected patients, healthy African American volunteers, and the nontransplanted SCD group (P < .01). By receiver operating characteristic analysis, these 3 proteins distinguished engrafted patients from the other groups (area under the curve, >0.8; P < .05). We then evaluated the concentration of these 3 proteins in samples collected pre-HSCT and at days +30, +60, +100, and +180 post-HSCT. The results demonstrate that Tsp-1 and Pf-4 stratified engrafted patients as early as day 60 post-HSCT (P < .01), and that Gal-1 was significantly higher in engrafted patients as early as day 30 post-HSCT (P < .01). We also divided the rejected group into those who experienced primary (n = 5) and secondary graft rejection (n = 5) and found that engrafted patients had significantly higher Tsp-1 levels compared with patients who developed primary graft rejection at days +60 and +100 (P < .05), as well as higher Pf-4 levels compared with patients who developed primary graft rejection at post-transplantation (PT) day 100. Furthermore, Tsp-1 levels were significantly higher at PT days 60 and 100 and Pf-4 levels were higher at PT day 100 in engrafted patients compared with those who experienced secondary graft rejection. Increased concentrations of plasma Gal-1, Tsp-1, and Pf-4 could reflect increased T regulatory cells, IL-10, and TGF-β, which are essential players in the initiation of immunologic tolerance. These biomarkers may provide opportunities for preemptive intervention to minimize the incidence of graft rejection.

Keywords

References

  1. N Engl J Med. 2017 Apr 20;376(16):1561-1573 [PMID: 28423290]
  2. Sci Transl Med. 2010 Jan 6;2(13):13ra2 [PMID: 20371463]
  3. Int J Oncol. 2001 Mar;18(3):487-91 [PMID: 11179476]
  4. Circulation. 1994 Apr;89(4):1523-9 [PMID: 8149517]
  5. Glycobiology. 2006 Dec;16(12):1262-71 [PMID: 16917081]
  6. Mediators Inflamm. 2011;2011:296069 [PMID: 21765615]
  7. Eur J Immunol. 1998 Aug;28(8):2311-9 [PMID: 9710209]
  8. J Immunol. 2001 Feb 15;166(4):2427-36 [PMID: 11160302]
  9. J Immunol. 2017 Nov 15;199(10):3418-3426 [PMID: 28978692]
  10. Blood. 2012 Apr 19;119(16):3854-60 [PMID: 22383800]
  11. Nature. 2003 Oct 9;425(6958):577-84 [PMID: 14534577]
  12. Blood Adv. 2017 Apr 19;1(11):652-661 [PMID: 29296707]
  13. J Immunol. 1999 Oct 1;163(7):3801-11 [PMID: 10490978]
  14. J Biol Chem. 2015 May 15;290(20):12858-67 [PMID: 25839231]
  15. Nat Rev Dis Primers. 2018 Mar 15;4:18010 [PMID: 29542687]
  16. Mol Cell Biochem. 2004 Dec;267(1-2):177-85 [PMID: 15663199]
  17. Expert Rev Clin Immunol. 2009 Sep 1;5(5):535-546 [PMID: 20161000]
  18. Biol Blood Marrow Transplant. 2016 Feb;22(2):207-211 [PMID: 26500093]
  19. Przegl Lek. 2010;67(12):1282-91 [PMID: 21591354]
  20. J Leukoc Biol. 1996 Mar;59(3):363-70 [PMID: 8604014]
  21. Clin Immunol. 2003 Dec;109(3):295-307 [PMID: 14697744]
  22. Biol Blood Marrow Transplant. 1996 May;2(2):100-4 [PMID: 9118298]
  23. Nat Rev Cancer. 2010 Jun;10(6):415-24 [PMID: 20495575]
  24. Blood. 2009 Jan 8;113(2):273-8 [PMID: 18832652]
  25. Immunol Rev. 2009 Jul;230(1):144-59 [PMID: 19594634]
  26. Nat Rev Immunol. 2009 May;9(5):338-52 [PMID: 19365409]
  27. J Immunol. 2000 Oct 15;165(8):4624-31 [PMID: 11035105]
  28. Expert Rev Proteomics. 2011 Dec;8(6):705-15 [PMID: 22087656]
  29. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13134-9 [PMID: 17670934]
  30. J Leukoc Biol. 1995 Nov;58(5):575-81 [PMID: 7595059]
  31. PLoS One. 2019 May 22;14(5):e0217163 [PMID: 31116766]
  32. Biol Blood Marrow Transplant. 2013 Sep;19(9):1323-30 [PMID: 23791624]
  33. J Leukoc Biol. 2005 Jul;78(1):202-9 [PMID: 15788441]
  34. Blood. 2007 Mar 1;109(5):2058-65 [PMID: 17110462]
  35. J Immunol. 2017 Jun 15;198(12):4639-4651 [PMID: 28515282]
  36. J Immunol. 2006 May 15;176(10):6323-32 [PMID: 16670344]
  37. J Clin Invest. 2001 Apr;107(8):929-34 [PMID: 11306593]
  38. Nat Med. 2007 Dec;13(12):1450-7 [PMID: 18026113]
  39. Am J Pediatr Hematol Oncol. 1994 Feb;16(1):27-9 [PMID: 8311169]
  40. Scand J Immunol. 2015 Feb;81(2):129-34 [PMID: 25440775]
  41. Lancet. 2017 Jul 15;390(10091):311-323 [PMID: 28159390]
  42. J Exp Med. 2003 Oct 20;198(8):1277-83 [PMID: 14568985]
  43. Blood. 2017 Mar 16;129(11):1548-1556 [PMID: 27965196]
  44. Eur J Immunol. 2012 Nov;42(11):2881-8 [PMID: 22865279]
  45. J Immunol. 2000 Feb 15;164(4):2193-9 [PMID: 10657674]
  46. Circulation. 2004 Nov 2;110(18):e454-8 [PMID: 15520327]
  47. J Invest Dermatol. 2009 Aug;129(8):2022-30 [PMID: 19194474]
  48. J Clin Oncol. 2016 Aug 1;34(22):2583-90 [PMID: 27217465]
  49. Mol Immunol. 2007 Jan;44(4):506-13 [PMID: 16581128]
  50. Nat Immunol. 2009 Sep;10(9):981-91 [PMID: 19668220]
  51. J Immunol. 2001 Sep 1;167(5):2547-54 [PMID: 11509594]
  52. PLoS One. 2017 Jan 25;12(1):e0170741 [PMID: 28122020]
  53. Front Physiol. 2017 Dec 06;8:1009 [PMID: 29270132]
  54. Blood. 2017 Oct 26;130(17):1946-1948 [PMID: 28887325]
  55. Sci Rep. 2018 Feb 9;8(1):2725 [PMID: 29426942]
  56. Blood. 1997 Apr 1;89(7):2328-35 [PMID: 9116276]
  57. Nature. 2008 Apr 3;452(7187):571-9 [PMID: 18385731]
  58. Front Immunol. 2021 Nov 30;12:757279 [PMID: 34917079]
  59. Nat Rev Immunol. 2009 Jul;9(7):521-6 [PMID: 19483711]
  60. J Clin Invest. 2014 Feb;124(2):543-52 [PMID: 24463452]
  61. Blood. 2014 Jan 30;123(5):786-93 [PMID: 24363401]
  62. Bone Marrow Transplant. 2003 Apr;31(7):547-50 [PMID: 12692619]
  63. Inflammation. 2015 Apr;38(2):520-6 [PMID: 24986443]
  64. Int Immunol. 2006 Aug;18(8):1197-209 [PMID: 16772372]
  65. Adv Hematol. 2016;2016:4025073 [PMID: 26904122]
  66. Transplant Proc. 2015 Jan-Feb;47(1):93-6 [PMID: 25645780]
  67. Expert Opin Drug Saf. 2015;14(11):1749-58 [PMID: 26366626]
  68. Cell Death Differ. 2002 Jun;9(6):661-70 [PMID: 12032675]
  69. Bone Marrow Transplant. 2001 Sep;28(5):511-8 [PMID: 11593326]
  70. J Leukoc Biol. 2001 Jul;70(1):73-9 [PMID: 11435488]
  71. Proteomics Clin Appl. 2018 May;12(3):e1700085 [PMID: 29274201]
  72. Cell Rep. 2015 Nov 10;13(6):1110-1117 [PMID: 26527007]
  73. Am J Transplant. 2013 Mar;13(3):569-79 [PMID: 23356407]
  74. Chin Med. 2018 Jan 08;13:2 [PMID: 29321808]
  75. Biol Blood Marrow Transplant. 2017 Aug;23(8):1250-1256 [PMID: 28455006]
  76. Cell. 1998 Jun 26;93(7):1159-70 [PMID: 9657149]
  77. Br J Haematol. 1995 Dec;91(4):846-53 [PMID: 8547128]
  78. J Invest Dermatol. 1987 Dec;89(6):551-4 [PMID: 3680981]
  79. Genomics. 1990 May;7(1):123-6 [PMID: 2335352]
  80. N Engl J Med. 2013 Aug 8;369(6):529-39 [PMID: 23924003]
  81. J Immunol. 2002 Jul 15;169(2):770-7 [PMID: 12097379]
  82. Kidney Int. 2002 Feb;61(2):686-96 [PMID: 11849412]
  83. Nature. 1995 Dec 14;378(6558):736-9 [PMID: 7501023]
  84. J Immunol. 2006 Sep 15;177(6):3534-41 [PMID: 16951312]
  85. J Exp Med. 2005 Apr 4;201(7):1061-7 [PMID: 15809351]
  86. J Leukoc Biol. 2002 Sep;72(3):590-7 [PMID: 12223528]
  87. Int Immunopharmacol. 2010 Jun;10(6):643-7 [PMID: 20298813]
  88. J Immunol. 2005 Mar 1;174(5):2680-6 [PMID: 15728475]
  89. Blood. 2012 Nov 22;120(22):4285-91 [PMID: 22955919]
  90. Immunol Rev. 2007 Dec;220:199-213 [PMID: 17979848]
  91. Nat Immunol. 2007 Aug;8(8):825-34 [PMID: 17589510]
  92. Nat Rev Nephrol. 2014 Apr;10(4):215-25 [PMID: 24445740]
  93. Sci Rep. 2013 Nov 26;3:3345 [PMID: 24736213]
  94. Int J Biochem Cell Biol. 2005 Jun;37(6):1162-7 [PMID: 15778080]
  95. Cold Spring Harb Perspect Med. 2013 Nov 01;3(11): [PMID: 24186491]
  96. Novartis Found Symp. 2006;279:101-9; discussion 109-13, 216-9 [PMID: 17278389]
  97. J Immunol. 2010 Oct 15;185(8):4691-7 [PMID: 20844200]
  98. Nat Immunol. 2008 Jun;9(6):632-40 [PMID: 18438410]
  99. Sci Rep. 2016 Jun 28;6:28042 [PMID: 27350024]

Grants

  1. Z99 HL999999/Intramural NIH HHS
  2. ZIA HL006211/Intramural NIH HHS

MeSH Term

Anemia, Sickle Cell
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
Biomarkers
Galectin 1
Hematopoietic Stem Cell Transplantation
Humans
Immunologic Factors
Platelet Factor 4
Thrombospondin 1
Transplantation Conditioning

Chemicals

Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
Biomarkers
Galectin 1
Immunologic Factors
PF4 protein, human
SPZ1 protein, human
Thrombospondin 1
Platelet Factor 4

Word Cloud

Created with Highcharts 10.0.0patientsrejectionengraftedgraftcomparedplasmaTsp-1Pf-4cellearlyrejectedP<higherHSCTsamplesgroupanalysisGal-1daylevelsSickleSCDexperiencedproteins01dayspost-HSCTsignificantlyprimaryPT100diseasesignificantapproachincreasedBiomarkerspredictengraftmentbiomarkersresults4proteinconcentrationshealthyvolunteersn = 8nontransplanted305+60+10060n = 5secondarydevelopedEngraftmentCellinheritedredblooddisorderleadsmorbiditymortalitywidelyavailablecurativeremainsallogeneichematopoieticstemtransplantationHLA-haploidenticalhaploexpandsdonorpoolconsiderablypracticalalternativetraditionallyriskallograftpatientpotentiallyhelpoutcomeallowtreatmentstagereversepreventReliablenoninvasivemethodsneededsoughtdetectvariationsproteomesgraftsusedmassspectrometry-basedproteomicsidentifycandidateassociatedcomparingobtained910total1378identified45differentiallyexpressedBasedbioinformaticsinformationliteratureimmunoassayavailability7proteins-thrombospondin-1plateletfactortalin-1moesindivisioncontrol42homologCDC42galectin-1CD9-wereselectedamong35n = 9n = 10ELISAconfirmedup-regulationAfricanAmericanreceiveroperatingcharacteristicdistinguishedgroupsareacurve>08evaluatedconcentrationcollectedpre-HSCT+30+180demonstratestratified30alsodividedfoundwellpost-transplantationFurthermoreIncreasedreflectTregulatorycellsIL-10TGF-βessentialplayersinitiationimmunologictolerancemayprovideopportunitiespreemptiveinterventionminimizeincidenceThrombospondin-1PlateletFactorGalectin-1AssociatedPatientsDiseaseUnderwentHaploidenticalHematopoieticStemTransplantationHaplo-HSCTProteomicsRejection

Similar Articles

Cited By