Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study.

Sabrina Chettouf, Paul Triebkorn, Andreas Daffertshofer, Petra Ritter
Author Information
  1. Sabrina Chettouf: Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany. ORCID
  2. Paul Triebkorn: Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
  3. Andreas Daffertshofer: Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam. ORCID
  4. Petra Ritter: Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.

Abstract

Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter- and intra-hemispheric interactions that may be affected by aging-related changes. We adopted a theoretical model, according to which intra-hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter-hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20-25 year and older N = 14: 59-70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor-event-related EEG β-activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β-power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source-reconstructed β-amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β-amplitude modulation is associated with primary motor cortex "activation" (positive BOLD response) and premotor "deactivation" (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β-associated excitatory crosstalk between hemispheres.

Keywords

References

  1. Eur J Neurosci. 2012 Jul;36(1):2088-97 [PMID: 22583034]
  2. Prog Brain Res. 2006;159:211-22 [PMID: 17071233]
  3. Front Syst Neurosci. 2010 Jun 07;4:17 [PMID: 20589101]
  4. Neuroimage. 2006 Jul 15;31(4):1580-91 [PMID: 16632378]
  5. Nature. 2001 Jul 12;412(6843):128-30 [PMID: 11449247]
  6. Brain Res Brain Res Rev. 2005 Nov;49(3):641-62 [PMID: 15904971]
  7. Neurosci Biobehav Rev. 2017 Apr;75:234-256 [PMID: 28188888]
  8. Neurosci Biobehav Rev. 2014 Nov;47:614-35 [PMID: 25445184]
  9. Brain. 2003 Apr;126(Pt 4):873-88 [PMID: 12615645]
  10. Neurosci Res. 1998 Aug;31(4):265-71 [PMID: 9809585]
  11. Neurosci Lett. 2008 Nov 21;445(3):209-13 [PMID: 18793696]
  12. Biol Cybern. 2005 Feb;92(2):101-9 [PMID: 15685391]
  13. Nature. 2008 Jun 12;453(7197):869-78 [PMID: 18548064]
  14. J Neurosci. 2016 Feb 10;36(6):1808-22 [PMID: 26865607]
  15. Neuroimage. 2002 Apr;15(4):870-8 [PMID: 11906227]
  16. Neurosci Biobehav Rev. 2020 Jun;113:39-50 [PMID: 32142801]
  17. J Physiol. 2002 Aug 15;543(Pt 1):307-16 [PMID: 12181301]
  18. Front Aging Neurosci. 2015 May 08;7:76 [PMID: 26005417]
  19. Neurosci Biobehav Rev. 2014 Jun;43:100-17 [PMID: 24726575]
  20. Hum Brain Mapp. 2003 Apr;18(4):296-305 [PMID: 12632467]
  21. Front Neurol. 2019 Apr 04;10:325 [PMID: 31019487]
  22. Hum Brain Mapp. 2011 Feb;32(2):182-97 [PMID: 21229612]
  23. Magn Reson Imaging. 2007 Jul;25(6):923-32 [PMID: 17462844]
  24. Comput Intell Neurosci. 2011;2011:156869 [PMID: 21253357]
  25. Fiziol Cheloveka. 2000 Sep-Oct;26(5):35-43 [PMID: 11059150]
  26. Scand J Psychol. 2001 Jul;42(3):277-86 [PMID: 11501741]
  27. J Physiol. 2020 Nov;598(21):4781-4802 [PMID: 32770748]
  28. Hum Brain Mapp. 2022 May;43(7):2348-2364 [PMID: 35133058]
  29. J Neurosci. 2011 Aug 10;31(32):11597-616 [PMID: 21832190]
  30. Front Aging Neurosci. 2015 Sep 15;7:176 [PMID: 26441638]
  31. Neuropsychologia. 2008 Jan 31;46(2):419-25 [PMID: 17904169]
  32. Neuroimage. 2013 Oct 15;80:105-24 [PMID: 23668970]
  33. Neuroimage. 2009 Oct 1;47(4):1854-62 [PMID: 19539766]
  34. Nat Rev Neurosci. 2002 May;3(5):348-59 [PMID: 11988774]
  35. Exp Brain Res. 2008 Oct;190(4):389-400 [PMID: 18604526]
  36. Hum Brain Mapp. 2009 Apr;30(4):1168-87 [PMID: 18465747]
  37. J Neurosci Methods. 2018 May 1;301:9-17 [PMID: 29496570]
  38. Hum Brain Mapp. 2006 Mar;27(3):251-66 [PMID: 16082659]
  39. Neuroimage. 2019 Feb 1;186:358-368 [PMID: 30439511]
  40. Neuroimage. 2005 May 15;26(1):91-8 [PMID: 15862209]
  41. Hum Brain Mapp. 2020 Feb 15;41(3):640-655 [PMID: 31617272]
  42. Trends Cogn Sci. 2004 Jan;8(1):18-25 [PMID: 14697399]
  43. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  44. Neuroimage. 2014 Aug 1;96:81-7 [PMID: 24657352]
  45. Clin Neurophysiol. 2007 Feb;118(2):325-32 [PMID: 17095289]
  46. Exp Brain Res. 2006 Jan;168(4):547-56 [PMID: 16328313]
  47. Neuroimage. 2010 Feb 15;49(4):3269-75 [PMID: 19922805]
  48. Neuroimage. 2017 Oct 1;159:248-260 [PMID: 28756240]
  49. Electroencephalogr Clin Neurophysiol. 1998 Feb;109(1):50-62 [PMID: 11003064]
  50. Neuroimage. 2002 Dec;17(4):1720-8 [PMID: 12498746]
  51. Ann N Y Acad Sci. 2014 May;1316:29-52 [PMID: 24502540]
  52. Hum Brain Mapp. 2017 Jul;38(7):3538-3551 [PMID: 28419680]
  53. Annu Rev Neurosci. 2015 Jul 8;38:433-47 [PMID: 25938726]
  54. Int J Psychophysiol. 1986 Jul;4(2):99-110 [PMID: 3733494]
  55. J Am Geriatr Soc. 2005 Apr;53(4):695-9 [PMID: 15817019]
  56. Neuroimage. 2009 Oct 15;48(1):94-108 [PMID: 19539035]
  57. Percept Mot Skills. 1993 Feb;76(1):195-211 [PMID: 8451129]
  58. Brain. 1999 May;122 ( Pt 5):855-70 [PMID: 10355671]
  59. Behav Brain Res. 2012 Mar 1;228(1):219-31 [PMID: 22142953]
  60. Neurosci Lett. 2000 Jun 23;287(2):93-6 [PMID: 10854720]
  61. Nature. 2001 Nov 1;414(6859):69-73 [PMID: 11689944]
  62. Elife. 2018 Jan 08;7: [PMID: 29308767]
  63. Cereb Cortex. 2010 Oct;20(10):2368-79 [PMID: 20080932]
  64. Neuroimage. 2008 Jul 15;41(4):1395-407 [PMID: 18485745]
  65. Neuroimage. 2018 Feb 15;167:453-465 [PMID: 29100940]
  66. Neuroimage. 2007 Jun;36(2):370-7 [PMID: 17462913]
  67. Neuroimage. 2014 Oct 15;100:414-26 [PMID: 24939340]
  68. Neurology. 1999 Oct 22;53(7):1458-61 [PMID: 10534251]
  69. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  70. PLoS One. 2015 Apr 28;10(4):e0126255 [PMID: 25919488]
  71. Electroencephalogr Clin Neurophysiol. 1981 Mar;51(3):253-64 [PMID: 6163614]
  72. Neurosci Lett. 2002 Dec 16;334(3):191-5 [PMID: 12453627]
  73. PLoS One. 2012;7(12):e52573 [PMID: 23285097]
  74. Front Neurosci. 2019 Nov 06;13:1159 [PMID: 31787866]
  75. Neuroimage. 2019 Jul 15;195:340-353 [PMID: 30954709]
  76. Hum Brain Mapp. 2002 Jan;15(1):1-25 [PMID: 11747097]
  77. Neurosci Biobehav Rev. 2010 Apr;34(5):721-33 [PMID: 19850077]
  78. Neurosci Biobehav Rev. 2006;30(6):823-38 [PMID: 16911826]
  79. Hum Brain Mapp. 2019 Jul;40(10):3027-3040 [PMID: 30866155]
  80. J Cogn Neurosci. 2014 Sep;26(9):1883-90 [PMID: 24666162]
  81. Hum Brain Mapp. 2010 Aug;31(8):1281-95 [PMID: 20082331]
  82. IEEE Trans Neural Netw. 1999;10(3):626-34 [PMID: 18252563]
  83. Percept Mot Skills. 1996 Apr;82(2):515-25 [PMID: 8724924]
  84. Neuroimage. 2014 Jul 15;95:232-47 [PMID: 24657355]
  85. Neuroimage. 2005 May 1;25(4):1325-35 [PMID: 15850749]
  86. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):E4885-94 [PMID: 27469163]
  87. Neuroimage. 2014 Apr 15;90:449-68 [PMID: 24389422]
  88. Cereb Cortex. 2010 Nov;20(11):2605-13 [PMID: 20176689]
  89. Neuroimage. 2005 Feb 15;24(4):1080-7 [PMID: 15670685]
  90. Neurosci Biobehav Rev. 2006;30(6):749-61 [PMID: 16887187]
  91. Nature. 2016 Aug 11;536(7615):171-178 [PMID: 27437579]
  92. Front Neuroinform. 2011 Jun 27;5:4 [PMID: 21743807]
  93. Neuroimage. 2003 Jun;19(2 Pt 1):281-95 [PMID: 12814579]
  94. Psychon Bull Rev. 2005 Dec;12(6):969-92 [PMID: 16615317]
  95. Annu Rev Psychol. 2009;60:173-96 [PMID: 19035823]
  96. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  97. J Mot Behav. 2007 Jan;39(1):3-8 [PMID: 17251166]
  98. Brain. 1998 Aug;121 ( Pt 8):1513-31 [PMID: 9712013]
  99. Electroencephalogr Clin Neurophysiol. 1994 Oct;93(5):390-403 [PMID: 7525247]
  100. Neuroreport. 2001 Jan 22;12(1):99-104 [PMID: 11201100]
  101. Arch Neurol. 1990 Jun;47(6):681-4 [PMID: 2346396]

MeSH Term

Aged
Aging
Cohort Studies
Electroencephalography
Humans
Magnetic Resonance Imaging
Motor Cortex

Word Cloud

Created with Highcharts 10.0.0motorpremotorprimarycortexyoungerintra-hemisphericgroupsolderBOLDcoordinationnetworkmayinhibitionageEEGfMRIadultslearningtaskparticipantssignificantlypositivenegativemodulationresponseagingSensorimotorrequiresorchestratedactivitybrainmediatedinter-interactionsaffectedaging-relatedchangesadoptedtheoreticalmodelaccordingmandatorycompensateinter-hemisphericexcitationcorpuscallosumtestfunctionacquiredelectroencephalographysimultaneouslyfunctionalmagneticresonanceimagingtwohealthyN = 13:20-25 yearN =14:59-70 yearunimanualaveragequalityperformancestayedonesAccompanyingdecreasesmotor-event-relatedβ-activitylateralizedtowardcontralateralregionsalbeitgroupmeanβ-powerexecutionhigherbilateralareascomparedbloodoxygenleveldependentsignalspositivelycorrelatedsource-reconstructedβ-amplitudes:suggestsβ-amplitudeassociated"activation""deactivation"Althoughlatterresultsdiscriminateunderscoreenhancedexplainedβ-associatedexcitatorycrosstalkhemispheresUnimanualsensorimotorlearning-AsimultaneousEEG-fMRIstudyperceptualbehavior

Similar Articles

Cited By