Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition.

Jordi Merino, Inbar Linenberg, Kate M Bermingham, Sajaysurya Ganesh, Elco Bakker, Linda M Delahanty, Andrew T Chan, Joan Capdevila Pujol, Jonathan Wolf, Haya Al Khatib, Paul W Franks, Tim D Spector, Jose M Ordovas, Sarah E Berry, Ana M Valdes
Author Information
  1. Jordi Merino: Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ORCID
  2. Inbar Linenberg: Zoe Ltd, London, United Kingdom.
  3. Kate M Bermingham: Department of Nutritional Sciences, King's College London, London, United Kingdom.
  4. Sajaysurya Ganesh: Zoe Ltd, London, United Kingdom.
  5. Elco Bakker: Zoe Ltd, London, United Kingdom.
  6. Linda M Delahanty: Department of Medicine, Harvard Medical School, Boston, MA, USA.
  7. Andrew T Chan: Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  8. Joan Capdevila Pujol: Zoe Ltd, London, United Kingdom.
  9. Jonathan Wolf: Zoe Ltd, London, United Kingdom. ORCID
  10. Haya Al Khatib: Zoe Ltd, London, United Kingdom.
  11. Paul W Franks: Department of Clinical Sciences, Lund University, Malmö, Sweden.
  12. Tim D Spector: Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom.
  13. Jose M Ordovas: Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. ORCID
  14. Sarah E Berry: Department of Nutritional Sciences, King's College London, London, United Kingdom. ORCID
  15. Ana M Valdes: School of Medicine, University of Nottingham, Nottingham, United Kingdom.

Abstract

BACKGROUND: Continuous glucose monitor (CGM) devices enable characterization of individuals' glycemic variation. However, there are concerns about their reliability for categorizing glycemic responses to foods that would limit their potential application in personalized nutrition recommendations.
OBJECTIVES: We aimed to evaluate the concordance of 2 simultaneously worn CGM devices in measuring postprandial glycemic responses.
METHODS: Within ZOE PREDICT (Personalised Responses to Dietary Composition Trial) 1, 394 participants wore 2 CGM devices simultaneously [n = 360 participants with 2 Abbott Freestyle Libre Pro (FSL) devices; n = 34 participants with both FSL and Dexcom G6] for ≤14 d while consuming standardized (n = 4457) and ad libitum (n = 5738) meals. We examined the CV and correlation of the incremental area under the glucose curve at 2 h (glucoseiAUC0-2 h). Within-subject meal ranking was assessed using Kendall τ rank correlation. Concordance between paired devices in time in range according to the American Diabetes Association cutoffs (TIRADA) and glucose variability (glucose CV) was also investigated.
RESULTS: The CV of glucoseiAUC0-2 h for standardized meals was 3.7% (IQR: 1.7%-7.1%) for intrabrand device and 12.5% (IQR: 5.1%-24.8%) for interbrand device comparisons. Similar estimates were observed for ad libitum meals, with intrabrand and interbrand device CVs of glucoseiAUC0-2 h of 4.1% (IQR: 1.8%-7.1%) and 16.6% (IQR: 5.5%-30.7%), respectively. Kendall τ rank correlation showed glucoseiAUC0-2h-derived meal rankings were agreeable between paired CGM devices (intrabrand: 0.9; IQR: 0.8-0.9; interbrand: 0.7; IQR: 0.5-0.8). Paired CGMs also showed strong concordance for TIRADA with a intrabrand device CV of 4.8% (IQR: 1.9%-9.8%) and an interbrand device CV of 3.2% (IQR: 1.1%-6.2%).
CONCLUSIONS: Our data demonstrate strong concordance of CGM devices in monitoring glycemic responses and suggest their potential use in personalized nutrition.This trial was registered at clinicaltrials.gov as NCT03479866.

Keywords

Associated Data

ClinicalTrials.gov | NCT03479866

References

  1. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4356-4364 [PMID: 31127824]
  2. J Inherit Metab Dis. 2018 Nov;41(6):917-927 [PMID: 29802555]
  3. Nat Metab. 2021 Apr;3(4):523-529 [PMID: 33846643]
  4. Diabetes Care. 2021 Jul;44(7):1641-1646 [PMID: 34099515]
  5. Diabetes Technol Ther. 2018 Jun;20(6):395-402 [PMID: 29901421]
  6. J Diabetes Sci Technol. 2008 Nov;2(6):1094-100 [PMID: 19885298]
  7. Diabetes Technol Ther. 2019 May;21(5):295-302 [PMID: 30994362]
  8. JAMA. 2020 Aug 25;324(8):735-736 [PMID: 32766768]
  9. Diabetes Care. 2021 Jan;44(Suppl 1):S53-S72 [PMID: 33298416]
  10. JAMA. 2006 Apr 12;295(14):1681-7 [PMID: 16609090]
  11. J Diabetes Sci Technol. 2013 Jul 01;7(4):842-53 [PMID: 23911165]
  12. JAMA Netw Open. 2019 Feb 1;2(2):e188102 [PMID: 30735238]
  13. BMJ. 2018 Jun 13;361:bmj.k2173 [PMID: 29898881]
  14. Am J Clin Nutr. 2020 Oct 1;112(4):1114-1119 [PMID: 32766882]
  15. Lancet Diabetes Endocrinol. 2018 May;6(5):416-426 [PMID: 29433995]
  16. J Diabetes Sci Technol. 2015 Jan;9(1):63-8 [PMID: 25305282]
  17. J Clin Transl Sci. 2020 Sep 22;5(1):e51 [PMID: 33948272]
  18. J Diabetes Sci Technol. 2015 Jul;9(4):801-7 [PMID: 25852074]
  19. Nat Med. 2021 Feb;27(2):321-332 [PMID: 33432175]
  20. Diabetes Technol Ther. 2019 Sep;21(9):493-498 [PMID: 31287721]
  21. J Diabetes Sci Technol. 2013 Jul 01;7(4):815-23 [PMID: 23911162]
  22. Cell. 2015 Nov 19;163(5):1079-1094 [PMID: 26590418]
  23. Nat Med. 2020 Jun;26(6):964-973 [PMID: 32528151]
  24. Diabetologia. 2020 Dec;63(12):2501-2520 [PMID: 33047169]
  25. Diabetes Res Clin Pract. 2015 Nov;110(2):158-65 [PMID: 26474657]
  26. Curr Diabetes Rev. 2016;12(3):199-210 [PMID: 26073704]
  27. Cell Metab. 2017 Jun 6;25(6):1243-1253.e5 [PMID: 28591632]
  28. PLoS Biol. 2018 Jul 24;16(7):e2005143 [PMID: 30040822]
  29. BMC Endocr Disord. 2018 Aug 16;18(1):56 [PMID: 30115058]
  30. Diabetes Care. 2019 Aug;42(8):1593-1603 [PMID: 31177185]

Grants

  1. /Medical Research Council
  2. P30 DK40561/NIH HHS
  3. /Department of Health
  4. R35 CA253185/NCI NIH HHS
  5. P30 DK111022/NIDDK NIH HHS
  6. /Wellcome Trust
  7. BB/NO12739/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Blood Glucose
Blood Glucose Self-Monitoring
Diet
Glucose
Humans
Meals
Reproducibility of Results

Chemicals

Blood Glucose
Glucose

Word Cloud

Created with Highcharts 10.0.0IQR:devicesglucoseglycemicCGMresponses1CVdevicenutrition0personalizedconcordance2participantsmealscorrelationglucoseiAUC0-2 hmeal1%intrabrand8%interbrandmonitoringcategorizingpotentialsimultaneouslyFSLstandardizedadlibitumKendallτrankpairedTIRADAvariabilityalso37%54showed9strong2%usecontinuousBACKGROUND:Continuousmonitorenablecharacterizationindividuals'variationHoweverconcernsreliabilityfoodslimitapplicationrecommendationsOBJECTIVES:aimedevaluatewornmeasuringpostprandialMETHODS:WithinZOEPREDICTPersonalisedResponsesDietaryCompositionTrial394wore[n = 360AbbottFreestyleLibrePron = 34DexcomG6]≤14dconsumingn = 4457n = 5738examinedincrementalareacurve2 hWithin-subjectrankingassessedusingConcordancetimerangeaccordingAmericanDiabetesAssociationcutoffsinvestigatedRESULTS:7%-7125%1%-24comparisonsSimilarestimatesobservedCVs8%-7166%5%-30respectivelyglucoseiAUC0-2h-derivedrankingsagreeableintrabrand:8-0interbrand:75-08PairedCGMs9%-91%-6CONCLUSIONS:datademonstratesuggestThistrialregisteredclinicaltrialsgovNCT03479866Validitydiet:implicationsdietprecision

Similar Articles

Cited By