Trade-offs between cost of ingestion and rate of intake drive defensive toxin use.

Tyler E Douglas, Sofia G Beskid, Callie E Gernand, Brianna E Nirtaut, Kristen E Tamsil, Richard W Fitch, Rebecca D Tarvin
Author Information
  1. Tyler E Douglas: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA. ORCID
  2. Sofia G Beskid: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA. ORCID
  3. Callie E Gernand: Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA. ORCID
  4. Brianna E Nirtaut: Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA. ORCID
  5. Kristen E Tamsil: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA. ORCID
  6. Richard W Fitch: Department of Chemistry and Physics, Indiana State University, Terre Haute, IN 47809, USA. ORCID
  7. Rebecca D Tarvin: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA. ORCID

Abstract

Animals that ingest toxins can become unpalatable and even toxic to predators and parasites through toxin sequestration. Because most animals rapidly eliminate toxins to survive their ingestion, it is unclear how populations transition from susceptibility and toxin elimination to tolerance and accumulation as chemical defence emerges. Studies of chemical defence have generally focused on species with active toxin sequestration and target-site insensitivity mutations or toxin-binding proteins that permit survival without necessitating toxin elimination. Here, we investigate whether animals that presumably rely on toxin elimination for survival can use ingested toxins for defence. We use the A4 and A3 fly strains from the Drosophila Synthetic Population Resource (DSPR), which respectively possess high and low metabolic nicotine resistance among DSPR fly lines. We find that ingesting nicotine increased A4 but not A3 fly survival against wasp parasitism. Further, we find that despite possessing genetic variants that enhance toxin elimination, A4 flies accrued more nicotine than A3 individuals, likely by consuming more medium. Our results suggest that enhanced toxin metabolism can allow greater toxin intake by offsetting the cost of toxin ingestion. Passive toxin accumulation that accompanies increased toxin intake may underlie the early origins of chemical defence.

Keywords

References

  1. PeerJ. 2021 Jan 6;9:e10528 [PMID: 33505786]
  2. Science. 2017 Sep 22;357(6357):1261-1266 [PMID: 28935799]
  3. J Chem Biol. 2014 Jul 17;7(4):125-8 [PMID: 25320645]
  4. Genome Res. 2012 Aug;22(8):1558-66 [PMID: 22496517]
  5. J Comp Physiol A. 1996 Aug;179(2):255-61 [PMID: 8765561]
  6. Biol Lett. 2022 Feb;18(2):20210579 [PMID: 35135316]
  7. PLoS Genet. 2015 Nov 30;11(11):e1005663 [PMID: 26619284]
  8. Aquat Toxicol. 2019 Jan;206:114-122 [PMID: 30472480]
  9. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2498-503 [PMID: 18268352]
  10. Chem Biol Interact. 2000 Mar 1;125(2):93-105 [PMID: 10699570]
  11. Mar Drugs. 2010 Mar 10;8(3):577-93 [PMID: 20411116]
  12. Nat Commun. 2019 Oct 25;10(1):4872 [PMID: 31653862]
  13. BMC Res Notes. 2020 Mar 30;13(1):188 [PMID: 32228671]
  14. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1245-52 [PMID: 24379363]
  15. Genetics. 2014 Sep;198(1):45-57 [PMID: 25236448]
  16. Science. 2002 Sep 27;297(5590):2253-6 [PMID: 12351787]
  17. J Exp Biol. 2019 Jun 20;222(Pt 12): [PMID: 31138640]
  18. Curr Biol. 2012 Mar 20;22(6):488-93 [PMID: 22342747]
  19. J Nat Prod. 2010 Mar 26;73(3):331-7 [PMID: 20337496]
  20. J Gen Physiol. 2021 Sep 6;153(9): [PMID: 34351379]
  21. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6154-8 [PMID: 6435126]
  22. Insect Biochem Mol Biol. 2017 Feb;81:51-61 [PMID: 28011348]
  23. Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13040-5 [PMID: 22826239]
  24. Genetics. 2017 Sep;207(1):311-325 [PMID: 28743761]
  25. Nature. 2019 Oct;574(7778):409-412 [PMID: 31578524]
  26. Proc Biol Sci. 2015 Nov 7;282(1818):20151865 [PMID: 26538594]
  27. Ecol Evol. 2016 Apr 08;6(10):3256-68 [PMID: 27096082]
  28. Insect Mol Biol. 2002 Aug;11(4):343-51 [PMID: 12144700]

MeSH Term

Animals
Drosophila
Drosophila melanogaster
Eating
Nicotine
Toxins, Biological
Wasps

Chemicals

Toxins, Biological
Nicotine

Word Cloud

Created with Highcharts 10.0.0toxindefenceeliminationchemicaltoxinscaningestionsurvivaluseA4A3flynicotineintakesequestrationanimalsaccumulationDSPRfindincreasedmetabolismcostAnimalsingestbecomeunpalatableeventoxicpredatorsparasitesrapidlyeliminatesurviveunclearpopulationstransitionsusceptibilitytoleranceemergesStudiesgenerallyfocusedspeciesactivetarget-siteinsensitivitymutationstoxin-bindingproteinspermitwithoutnecessitatinginvestigatewhetherpresumablyrelyingestedstrainsDrosophilaSyntheticPopulationResourcerespectivelypossesshighlowmetabolicresistanceamonglinesingestingwaspparasitismdespitepossessinggeneticvariantsenhancefliesaccruedindividualslikelyconsumingmediumresultssuggestenhancedallowgreateroffsettingPassiveaccompaniesmayunderlieearlyoriginsTrade-offsratedrivedefensivebioaccumulationenemy-freespacemulti-trophicselectionxenobiotic

Similar Articles

Cited By