Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume.

Timothy D'Angelo, Jacqueline Goordial, Nicole J Poulton, Lauren Seyler, Julie A Huber, Ramunas Stepanauskas, Beth N Orcutt
Author Information
  1. Timothy D'Angelo: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.
  2. Jacqueline Goordial: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.
  3. Nicole J Poulton: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.
  4. Lauren Seyler: School of Natural Science and Mathematics, Stockton University, Galloway, NJ, United States.
  5. Julie A Huber: Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.
  6. Ramunas Stepanauskas: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.
  7. Beth N Orcutt: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.

Abstract

Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 10 cells ml) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.

Keywords

References

  1. Nature. 2020 Mar;579(7798):250-255 [PMID: 32161389]
  2. Cytometry A. 2008 Oct;73(10):926-30 [PMID: 18752282]
  3. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  4. Astrobiology. 2019 Jan;19(1):1-27 [PMID: 30346215]
  5. Front Microbiol. 2020 Aug 17;11:1848 [PMID: 33013724]
  6. ISME J. 2015 Mar 17;9(4):857-70 [PMID: 25303714]
  7. ISME J. 2018 Jun;12(7):1861-1866 [PMID: 29523891]
  8. Nat Commun. 2019 Aug 6;10(1):3519 [PMID: 31388058]
  9. PeerJ. 2017 Mar 8;5:e3035 [PMID: 28289564]
  10. Front Microbiol. 2012 Feb 03;3:8 [PMID: 22347212]
  11. Cytometry A. 2012 Sep;81(9):727-31 [PMID: 22887982]
  12. Nat Commun. 2017 Jul 20;8(1):84 [PMID: 28729688]
  13. ISME J. 2018 Jan;12(1):1-16 [PMID: 29099490]
  14. ISME J. 2011 Mar;5(3):461-72 [PMID: 20844569]
  15. Environ Microbiol. 2020 Nov;22(11):4589-4603 [PMID: 32743860]
  16. J Bacteriol. 1996 Mar;178(6):1532-8 [PMID: 8626278]
  17. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  18. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  19. ISME J. 2019 Nov;13(11):2800-2816 [PMID: 31316134]
  20. BMC Genomics. 2014 Jan 03;15:8 [PMID: 24387194]
  21. PeerJ. 2018 Jan 25;6:e4320 [PMID: 29423345]
  22. Front Microbiol. 2013 Mar 19;4:52 [PMID: 23518919]
  23. Nat Commun. 2013;4:2539 [PMID: 24071791]
  24. mSystems. 2020 Feb 18;5(1): [PMID: 32071158]
  25. Sci Rep. 2016 Mar 03;6:22541 [PMID: 26935537]
  26. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  27. Cell. 2019 Dec 12;179(7):1623-1635.e11 [PMID: 31835036]
  28. ISME J. 2021 May;15(5):1271-1286 [PMID: 33328652]
  29. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  30. Environ Microbiol. 2021 Jul;23(7):3923-3936 [PMID: 33346395]
  31. Nat Rev Microbiol. 2020 Apr;18(4):241-256 [PMID: 32055027]
  32. ISME J. 2017 Nov;11(11):2624-2636 [PMID: 28820506]
  33. ISME J. 2020 Apr;14(4):1057-1062 [PMID: 31969684]
  34. Bioinformatics. 2012 Apr 1;28(7):1033-4 [PMID: 22332237]
  35. ISME J. 2013 Jan;7(1):161-72 [PMID: 22791235]
  36. Nat Microbiol. 2021 Jan;6(1):3-6 [PMID: 33349678]
  37. Front Genet. 2015 Dec 17;6:348 [PMID: 26734060]
  38. Sci Data. 2017 Mar 28;4:170037 [PMID: 28350381]
  39. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  40. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  41. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  42. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 [PMID: 11917018]
  43. ISME J. 2013 May;7(5):1026-37 [PMID: 23303374]
  44. ISME J. 2021 Apr;15(4):1192-1206 [PMID: 33273721]
  45. Sci Adv. 2021 Apr 28;7(18): [PMID: 33910898]
  46. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  47. ISME J. 2010 Jul;4(7):896-907 [PMID: 20220791]
  48. Appl Environ Microbiol. 2011 Jan;77(1):67-72 [PMID: 21075887]
  49. Appl Environ Microbiol. 2021 Apr 13;87(9): [PMID: 33608294]
  50. mBio. 2017 Mar 7;8(2): [PMID: 28270584]
  51. Nat Methods. 2010 Oct;7(10):807-12 [PMID: 20852648]
  52. ISME J. 2021 Oct;15(10):2830-2842 [PMID: 33824425]
  53. Nat Commun. 2020 May 19;11(1):2500 [PMID: 32427907]
  54. Bioinformatics. 2020 Apr 1;36(7):2251-2252 [PMID: 31742321]
  55. Nat Biotechnol. 2017 Aug 8;35(8):725-731 [PMID: 28787424]
  56. ISME J. 2016 Nov;10(11):2557-2568 [PMID: 27022995]
  57. mSystems. 2020 Mar 10;5(2): [PMID: 32156797]
  58. ISME J. 2008 Jul;2(7):696-706 [PMID: 18607374]

Word Cloud

Created with Highcharts 10.0.0lowfluidoceaniccrustbiomasssortingcellscellcrustalanalysiscyclingmicrobialsitesNorthPondstudysitebiospheremethodologysinglegenomicsequencingsmallvolumesresultsFluidscirculatingplayimportantrolesglobalbiogeochemicalmediatedinhabitantsstudyingchallengedsamplinglogisticsBoreholeobservatoriesinstalledwesternflankMid-AtlanticRidgeenabledinvestigationcoldoxygenatedbasaltictestappliesredox-sensitivefluorescentmoleculesflowcytometricapproximately10mlcompareresultingdatarecentlypublishedpairedmetagenomicmetatranscriptomicEvencoveragegenomelessonemillilitersimilarinterpretationdominanttaxafunctionalprofilescompared'omicstypicallyfilterordersmagnitudevolumediversecommunitydominatedGammaproteobacteriaBacteroidetesDesulfobacterotaAlphaproteobacteriaZetaproteobacteriaevidenceautotrophyheterotrophyvarietynitrogensulfurmetabolismsmotilityTogetherindicatefluorescenceactivatedpowerfuladditiontoolboxsystemssampleavailableOceanicCrustalFluidSingleCellGenomicsComplementsMetagenomicMetatranscriptomicSurveysOrdersMagnitudeLessSampleVolumeCORKSIODPdeepmetatranscriptomicsgenomics

Similar Articles

Cited By