Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides.

Trevor Williams, Miguel López-Ferber, Primitivo Caballero
Author Information
  1. Trevor Williams: Instituto de Ecología AC, Xalapa, Mexico.
  2. Miguel López-Ferber: Hydrosciences Montpellier, Univ Montpellier, IMT Mines Alès, IRD, CNRS, Alès, France.
  3. Primitivo Caballero: Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain.

Abstract

Nucleopolyhedroviruses (NPV, ) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.

Keywords

References

  1. J Gen Virol. 1999 Sep;80 ( Pt 9):2519-2526 [PMID: 10501509]
  2. J Virol. 1999 Jun;73(6):4908-18 [PMID: 10233952]
  3. PLoS Genet. 2022 Jun 6;18(6):e1009806 [PMID: 35666722]
  4. Proc Biol Sci. 2009 Jun 22;276(1665):2233-42 [PMID: 19324752]
  5. Arch Virol. 2018 Mar;163(3):713-718 [PMID: 29181624]
  6. Microb Ecol. 2001 Apr;41(3):222-231 [PMID: 11391460]
  7. Genome Announc. 2013 Oct 24;1(5): [PMID: 24158555]
  8. Environ Health. 2019 Jun 7;18(1):44 [PMID: 31170989]
  9. Virology. 2011 Mar 15;411(2):383-92 [PMID: 21300392]
  10. Oecologia. 2002 May;131(4):533-541 [PMID: 28547548]
  11. J Virol. 2003 Dec;77(24):13053-61 [PMID: 14645562]
  12. Food Environ Virol. 2016 Mar;8(1):86-100 [PMID: 26787118]
  13. Pest Manag Sci. 2001 Oct;57(10):981-7 [PMID: 11695193]
  14. Pestic Biochem Physiol. 2015 Jun;121:122-8 [PMID: 26047120]
  15. Dokl Biochem Biophys. 2015;465:351-3 [PMID: 26728722]
  16. J Virol. 2014 Nov;88(21):12586-98 [PMID: 25142609]
  17. J Virol. 1999 Jan;73(1):411-6 [PMID: 9847346]
  18. J Invertebr Pathol. 2005 Jun;89(2):101-11 [PMID: 15876438]
  19. J Invertebr Pathol. 2015 Nov;132:1-41 [PMID: 26225455]
  20. Appl Environ Microbiol. 2001 Nov;67(11):5204-9 [PMID: 11679346]
  21. PLoS One. 2013 Nov 05;8(11):e78834 [PMID: 24223853]
  22. Annu Rev Virol. 2021 Sep 29;8(1):183-199 [PMID: 34242062]
  23. J Invertebr Pathol. 2012 Nov;111(3):260-3 [PMID: 22981996]
  24. Virology. 2013 Jan 5;435(1):1-13 [PMID: 23217611]
  25. J Invertebr Pathol. 2011 May;107(1):33-42 [PMID: 21238456]
  26. Appl Environ Microbiol. 2015 Jun 15;81(12):3984-93 [PMID: 25841011]
  27. Pest Manag Sci. 2014 Jun;70(6):967-76 [PMID: 23983128]
  28. Appl Environ Microbiol. 2021 Jan 15;87(3): [PMID: 33187994]
  29. J Virol. 2019 Mar 5;93(6): [PMID: 30602603]
  30. Genome Biol Evol. 2015 Nov 27;8(1):94-108 [PMID: 26615220]
  31. J Evol Biol. 2016 Dec;29(12):2480-2490 [PMID: 27622965]
  32. Appl Environ Microbiol. 2005 Aug;71(8):4254-62 [PMID: 16085811]
  33. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2584-9 [PMID: 15699333]
  34. J Invertebr Pathol. 2007 Mar;94(3):153-62 [PMID: 17125790]
  35. Microb Ecol. 2008 Apr;55(3):530-9 [PMID: 17647052]
  36. J Invertebr Pathol. 2013 Feb;112(2):159-61 [PMID: 23220242]
  37. Pest Manag Sci. 2016 Apr;72(4):660-70 [PMID: 25960129]
  38. J Virol. 2008 Aug;82(16):7897-904 [PMID: 18550678]
  39. Virus Evol. 2020 Jan 27;6(1):vez060 [PMID: 32002191]
  40. Appl Environ Microbiol. 2013 Dec;79(24):7709-18 [PMID: 24096419]
  41. Viruses. 2021 Aug 26;13(9): [PMID: 34578277]
  42. Trends Microbiol. 2017 May;25(5):402-412 [PMID: 28262512]
  43. PLoS One. 2013 Oct 30;8(10):e77683 [PMID: 24204916]
  44. Infect Genet Evol. 2021 Jun;90:104749 [PMID: 33540087]
  45. Nucleic Acids Res. 1986 May 12;14(9):3841-57 [PMID: 3012482]
  46. Viruses. 2017 Sep 04;9(9): [PMID: 28869567]
  47. Viruses. 2021 Sep 22;13(10): [PMID: 34696324]
  48. J Gen Virol. 2013 Nov;94(Pt 11):2524-2529 [PMID: 23929831]
  49. Cell Host Microbe. 2017 Oct 11;22(4):437-441 [PMID: 29024640]
  50. J Gen Virol. 2013 Jan;94(Pt 1):177-186 [PMID: 22993192]
  51. J Invertebr Pathol. 2010 Oct;105(2):190-3 [PMID: 20600096]
  52. Annu Rev Virol. 2015 Nov;2(1):161-79 [PMID: 26958911]
  53. J Gen Virol. 2009 Jun;90(Pt 6):1499-1504 [PMID: 19264654]
  54. Am Nat. 2015 Dec;186(6):797-806 [PMID: 26655986]
  55. Sci Adv. 2020 Dec 4;6(49): [PMID: 33277258]
  56. Appl Environ Microbiol. 2004 Sep;70(9):5579-88 [PMID: 15345446]
  57. J Gen Virol. 2014 Oct;95(Pt 10):2297-2309 [PMID: 24854001]
  58. Am Nat. 2012 Mar;179(3):E70-96 [PMID: 22322229]
  59. Appl Environ Microbiol. 2001 Aug;67(8):3702-6 [PMID: 11472950]
  60. Viruses. 2015 Jul 07;7(7):3625-46 [PMID: 26198241]
  61. J Virol. 2014 Mar;88(6):3548-56 [PMID: 24403587]
  62. Virus Genes. 2020 Jun;56(3):401-405 [PMID: 32030574]
  63. J Invertebr Pathol. 2013 Nov;114(3):258-67 [PMID: 24012501]
  64. Ecol Lett. 2015 Nov;18(11):1252-1261 [PMID: 26365355]
  65. Proc Biol Sci. 2003 Nov 7;270(1530):2249-55 [PMID: 14613611]
  66. PLoS Comput Biol. 2011 Jun;7(6):e1002097 [PMID: 21738463]
  67. J Gen Virol. 2020 Dec;101(12):1300-1304 [PMID: 32894214]
  68. Virology. 1981 Jan 30;108(2):297-308 [PMID: 18635031]
  69. Arch Virol. 2012 Dec;157(12):2281-9 [PMID: 22878553]
  70. Viruses. 2015 Apr 30;7(5):2230-67 [PMID: 25941826]
  71. Braz J Microbiol. 2021 Dec;52(4):1835-1843 [PMID: 34561846]
  72. Virus Res. 2014 Oct 13;191:70-82 [PMID: 25087880]
  73. Appl Environ Microbiol. 2013 Jul;79(13):4056-64 [PMID: 23624474]
  74. J Gen Virol. 2018 Sep;99(9):1185-1186 [PMID: 29947603]
  75. J Virol. 1991 Jul;65(7):3625-32 [PMID: 2041087]
  76. Virus Evol. 2019 Jul 19;5(2):vez025 [PMID: 31338208]
  77. Viruses. 2015 Jan 20;7(1):306-19 [PMID: 25609304]
  78. Proc Biol Sci. 2010 Mar 22;277(1683):943-51 [PMID: 19939845]
  79. J Insect Physiol. 2019 Aug - Sep;117:103894 [PMID: 31175854]

Word Cloud

Created with Highcharts 10.0.0insecticidesapproachNPV-basedgenotypicvirushostrangelepidopteranpestsdevelopmenttechnologyvirusesdiversityvariantcanproducecontrolappliedNucleopolyhedrovirusesNPVinfectestablishedrecordsafeeffectivebiologicaldescribenewtakesadvantageuniquewaytransmittedcollectiveinfectiousunitspresentnaturalpopulationsten-stepproceduredescribedinvolvingselectionmixingcoinfectionintraspecificcoocclusionvariantswithinviralocclusionbodiesUsingtwoexamplesdemonstrateusedhighlypathogenicpreparationspestrestrictedlimitsuptakerecentlyadaptedcustom-designedinterspecificmixturescomplexesparticularcropslongsharedspeciesavailableproductionpotentialacrossbroadNPV-pestpathosystemsNucleopolyhedrovirusCoocclusionTechnology:NewConceptDevelopmentBiologicalInsecticidesbaculoviruscomplementationinsecticidalcharacteristicsvirus-virusinteractions

Similar Articles

Cited By