Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns.

Juan Camilo Arboleda-Rivera, Gloria Machado-Rodríguez, Boris A Rodríguez, Jayson Gutiérrez
Author Information
  1. Juan Camilo Arboleda-Rivera: Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia. ORCID
  2. Gloria Machado-Rodríguez: Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia.
  3. Boris A Rodríguez: Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, Colombia. ORCID
  4. Jayson Gutiérrez: Flanders Marine Institute (VLIZ), Oostende, Belgium.

Abstract

A central problem in developmental and synthetic biology is understanding the mechanisms by which cells in a tissue or a Petri dish process external cues and transform such information into a coherent response, e.g., a terminal differentiation state. It was long believed that this type of positional information could be entirely attributed to a gradient of concentration of a specific signaling molecule (i.e., a morphogen). However, advances in experimental methodologies and computer modeling have demonstrated the crucial role of the dynamics of a cell's gene regulatory network (GRN) in decoding the information carried by the morphogen, which is eventually translated into a spatial pattern. This morphogen interpretation mechanism has gained much attention in systems biology as a tractable system to investigate the emergent properties of complex genotype-phenotype maps. In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-node GRNs with the ability to generate a band-like expression pattern (target phenotype) in the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic field in a developing embryo. Unlike most modeling studies published so far, here we explore the space of GRN topologies with nodes having the potential to perceive the same input signal differently. This allows for a lot more flexibility during the search space process, and thus enables us to identify a larger set of potentially interesting and realizable morphogen interpretation mechanisms. Out of 2061 GRNs selected using the search space algorithm, we found 714 classes of network topologies that could correctly interpret the morphogen. Notably, the main network motif that generated the target phenotype in response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which agrees with previous theoretical expectations and experimental observations. Particularly, compared to a previously reported pattern forming GRN topologies, we have uncovered a great variety of novel network designs, some of which might be worth inquiring through synthetic biology methodologies to test for the ability of network design with minimal regulatory complexity to interpret a developmental cue robustly.

References

  1. Mol Syst Biol. 2018 Sep 10;14(9):e8102 [PMID: 30201776]
  2. Mol Syst Biol. 2020 Jun;16(6):e9361 [PMID: 32529808]
  3. J Theor Biol. 2006 Feb 7;238(3):683-93 [PMID: 16098989]
  4. Science. 2009 May 29;324(5931):1199-202 [PMID: 19478183]
  5. Nat Rev Genet. 2004 Nov;5(11):826-37 [PMID: 15520792]
  6. Science. 2018 Feb 9;359(6376): [PMID: 29439214]
  7. Nat Commun. 2014 Sep 23;5:4905 [PMID: 25247316]
  8. Nature. 2005 Apr 28;434(7037):1130-4 [PMID: 15858574]
  9. Development. 2019 Dec 20;146(24): [PMID: 31862794]
  10. Kybernetik. 1972 Dec;12(1):30-9 [PMID: 4663624]
  11. Mol Syst Biol. 2005;1:2005.0006 [PMID: 16729041]
  12. Nat Rev Genet. 2007 Sep;8(9):663-74 [PMID: 17703237]
  13. Genetics. 2004 Aug;167(4):1721-37 [PMID: 15342511]
  14. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  15. Cell. 1988 Jul 1;54(1):95-104 [PMID: 3383245]
  16. J Exp Zool. 1995 Jan 1;271(1):47-56 [PMID: 7852948]
  17. Bioinformatics. 2005 Jun 15;21(12):2883-90 [PMID: 15802287]
  18. Bioessays. 2000 Aug;22(8):753-60 [PMID: 10918306]
  19. Development. 2021 Feb 25;148(4): [PMID: 33547135]
  20. Bull Math Biol. 1990;52(1-2):153-97; discussion 119-52 [PMID: 2185858]
  21. Genes Cells. 2005 Nov;10(11):1025-38 [PMID: 16236132]
  22. J Mol Biol. 2003 Nov 21;334(2):197-204 [PMID: 14607112]
  23. Sci Rep. 2014 May 16;4:5003 [PMID: 24830352]
  24. Curr Opin Chem Biol. 2012 Aug;16(3-4):292-9 [PMID: 22633822]
  25. PLoS Biol. 2010 Jun 01;8(6):e1000382 [PMID: 20532235]
  26. J Theor Biol. 1969 Oct;25(1):1-47 [PMID: 4390734]
  27. Science. 2014 Aug 1;345(6196):566-70 [PMID: 25082703]
  28. Nature. 2005 Nov 24;438(7067):441-2 [PMID: 16306980]
  29. Mol Pharm. 2015 Feb 2;12(2):322-31 [PMID: 25098838]
  30. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  31. Proc Biol Sci. 2008 Jan 7;275(1630):91-100 [PMID: 17971325]
  32. Cell. 1988 Jul 1;54(1):83-93 [PMID: 3383244]
  33. Nucleic Acids Res. 2007;35(1):279-87 [PMID: 17170011]
  34. J Am Chem Soc. 2016 Dec 28;138(51):16809-16814 [PMID: 27990812]
  35. Adv Biosyst. 2019 Apr;3(4):e1800280 [PMID: 32627430]
  36. Nature. 2005 Jun 9;435(7043):839-43 [PMID: 15944709]
  37. Bull Math Biol. 2015 Aug;77(8):1457-92 [PMID: 26420504]
  38. Mol Syst Biol. 2010 Nov 2;6:425 [PMID: 21045819]
  39. Cell. 2004 Jun 11;117(6):713-20 [PMID: 15186773]
  40. Curr Opin Biotechnol. 2012 Oct;23(5):703-11 [PMID: 22305476]
  41. Open Biol. 2013 Apr 24;3(4):130031 [PMID: 23615029]
  42. Theor Biol Med Model. 2006 Mar 16;3:13 [PMID: 16542429]
  43. PLoS Comput Biol. 2011 Oct;7(10):e1002171 [PMID: 21998566]
  44. J R Soc Interface. 2015 Jan 6;12(102):20141041 [PMID: 25551154]
  45. Cell. 2012 Jan 20;148(1-2):273-84 [PMID: 22265416]
  46. Curr Opin Biotechnol. 2017 Oct;47:133-141 [PMID: 28750201]
  47. Development. 2014 Oct;141(20):3868-78 [PMID: 25294939]
  48. J Biol Eng. 2019 May 3;13:39 [PMID: 31073328]
  49. Nat Commun. 2019 Mar 6;10(1):1083 [PMID: 30842454]
  50. Nature. 2000 Jul 13;406(6792):188-92 [PMID: 10910359]
  51. Nature. 2002 Nov 14;420(6912):206-10 [PMID: 12432404]
  52. J Theor Biol. 1984 Aug 7;109(3):299-329 [PMID: 6471873]
  53. Cell. 2003 May 30;113(5):597-607 [PMID: 12787501]
  54. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]

MeSH Term

Gene Expression
Gene Regulatory Networks
Signal Transduction
Synthetic Biology
Systems Biology

Word Cloud

Created with Highcharts 10.0.0networkmorphogenspacetopologiesbiologyinformationgeneregulatoryGRNpatterndevelopmentalsyntheticmechanismscellsprocessresponseetypeexperimentalmethodologiesmodelinginterpretationalgorithmdesignGRNsabilityexpressiontargetphenotypeinputsignalsearchinterpretcentralproblemunderstandingtissuePetridishexternalcuestransformcoherentgterminaldifferentiationstatelongbelievedpositionalentirelyattributedgradientconcentrationspecificsignalingmoleculeiHoweveradvancescomputerdemonstratedcrucialroledynamicscell'sdecodingcarriedeventuallytranslatedspatialmechanismgainedmuchattentionsystemstractablesysteminvestigateemergentpropertiescomplexgenotype-phenotypemapsstudyapplyMarkovchainMonteCarloMCMC-likeprobethree-nodegenerateband-likemiddlearrangement30resemblesimple1-DmorphogeneticfielddevelopingembryoUnlikestudiespublishedfarexplorenodespotentialperceivedifferentlyallowslotflexibilitythusenablesusidentifylargersetpotentiallyinterestingrealizable2061selectedusingfound714classescorrectlyNotablymainmotifgenerated3IncoherentFeed-ForwardLoopI3-FFLagreesprevioustheoreticalexpectationsobservationsParticularlycomparedpreviouslyreportedforminguncoveredgreatvarietynoveldesignsmightworthinquiringtestminimalcomplexitycuerobustlyElucidatingmulti-inputprocessing3-nodecapablegeneratingstripedpatterns

Similar Articles

Cited By