Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery.

Parisa Eslami, Martin Albino, Francesca Scavone, Federica Chiellini, Andrea Morelli, Giovanni Baldi, Laura Cappiello, Saer Doumett, Giada Lorenzi, Costanza Ravagli, Andrea Caneschi, Anna Laurenzana, Claudio Sangregorio
Author Information
  1. Parisa Eslami: INSTM and Dipartimento di Ingegneria Industriale-DIEF, Università degli Studi di Firenze, 50139 Sesto Fiorentino, Italy. ORCID
  2. Martin Albino: INSTM and Dipartimento di Ingegneria Industriale-DIEF, Università degli Studi di Firenze, 50139 Sesto Fiorentino, Italy. ORCID
  3. Francesca Scavone: Dipartimento di Scienze Biomediche Sperimentali e Cliniche Mario Serio, Università degli Studi di Firenze, 50134 Florence, Italy.
  4. Federica Chiellini: INSTM and Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy. ORCID
  5. Andrea Morelli: INSTM and Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
  6. Giovanni Baldi: Ce.Ri.Col, Colorobbia Consulting S.R.L, 50059 Sovigliana-Vinci, FI, Italy. ORCID
  7. Laura Cappiello: Ce.Ri.Col, Colorobbia Consulting S.R.L, 50059 Sovigliana-Vinci, FI, Italy.
  8. Saer Doumett: Ce.Ri.Col, Colorobbia Consulting S.R.L, 50059 Sovigliana-Vinci, FI, Italy.
  9. Giada Lorenzi: Ce.Ri.Col, Colorobbia Consulting S.R.L, 50059 Sovigliana-Vinci, FI, Italy. ORCID
  10. Costanza Ravagli: Ce.Ri.Col, Colorobbia Consulting S.R.L, 50059 Sovigliana-Vinci, FI, Italy.
  11. Andrea Caneschi: INSTM and Dipartimento di Ingegneria Industriale-DIEF, Università degli Studi di Firenze, 50139 Sesto Fiorentino, Italy. ORCID
  12. Anna Laurenzana: Dipartimento di Scienze Biomediche Sperimentali e Cliniche Mario Serio, Università degli Studi di Firenze, 50134 Florence, Italy. ORCID
  13. Claudio Sangregorio: INSTM and Dipartimento di Chimica, U. Schiff, Università di Firenze, 50019 Sesto Fiorentino, Italy. ORCID

Abstract

In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.

Keywords

References

  1. Expert Opin Drug Deliv. 2019 Jan;16(1):69-78 [PMID: 30496697]
  2. Adv Drug Deliv Rev. 2011 Jan-Feb;63(1-2):24-46 [PMID: 20685224]
  3. Int J Hyperthermia. 2013 Dec;29(8):828-34 [PMID: 24219800]
  4. Biomaterials. 2013 May;34(14):3647-57 [PMID: 23415642]
  5. Expert Opin Drug Deliv. 2013 Apr;10(4):511-27 [PMID: 23289519]
  6. Nanoscale Res Lett. 2019 Mar 4;14(1):77 [PMID: 30830486]
  7. ACS Appl Mater Interfaces. 2015 May 20;7(19):10132-45 [PMID: 25840122]
  8. Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:206-217 [PMID: 30274052]
  9. Crit Rev Biomed Eng. 2010;38(1):101-16 [PMID: 21175406]
  10. Drug Dev Ind Pharm. 2018 May;44(5):697-706 [PMID: 29370711]
  11. Adv Drug Deliv Rev. 2010 Mar 8;62(3):284-304 [PMID: 19909778]
  12. Langmuir. 2012 Sep 11;28(36):13051-9 [PMID: 22889238]
  13. Nanoscale. 2014 Oct 21;6(20):11553-73 [PMID: 25212238]
  14. Apoptosis. 2015 Nov;20(11):1411-9 [PMID: 26354715]
  15. Dalton Trans. 2014 Dec 28;43(48):18056-65 [PMID: 25353400]
  16. Nanoscale. 2013 Dec 7;5(23):11362-73 [PMID: 24108444]
  17. J Phys Chem B. 2011 Oct 13;115(40):11609-18 [PMID: 21899307]
  18. Int J Hyperthermia. 2018 Mar;34(2):144-156 [PMID: 29498314]
  19. ACS Omega. 2017 Jul 31;2(7):3399-3405 [PMID: 30023694]
  20. Nanomaterials (Basel). 2018 Nov 13;8(11): [PMID: 30428608]
  21. Nat Mater. 2013 Nov;12(11):991-1003 [PMID: 24150417]
  22. Nanoscale. 2018 Nov 15;10(44):20519-20525 [PMID: 30397703]
  23. Nanoscale Res Lett. 2019 May 30;14(1):188 [PMID: 31147786]
  24. Eur J Cancer. 2008 Nov;44(17):2546-54 [PMID: 18789678]
  25. Biomaterials. 2005 Jun;26(16):3055-64 [PMID: 15603800]
  26. Biotechnol Bioeng. 2015 Oct;112(10):1967-83 [PMID: 25995079]
  27. Biochem Biophys Res Commun. 2015 Dec 18;468(3):463-70 [PMID: 26271592]
  28. Pharmaceutics. 2020 Feb 11;12(2): [PMID: 32053995]
  29. Int J Hyperthermia. 2006 May;22(3):205-13 [PMID: 16754340]
  30. Nanotechnology. 2019 Dec 13;30(50):502003 [PMID: 31491782]
  31. Int J Hyperthermia. 2013 Dec;29(8):706-14 [PMID: 24106927]
  32. Nanoscale. 2016 Jun 16;8(24):12152-61 [PMID: 26892588]
  33. Adv Drug Deliv Rev. 2012 Aug;64(11):979-92 [PMID: 21996056]
  34. J Am Chem Soc. 2011 Jul 13;133(27):10459-72 [PMID: 21604803]
  35. Nanomaterials (Basel). 2018 Jun 03;8(6): [PMID: 29865277]
  36. Adv Colloid Interface Sci. 2011 Aug 10;166(1-2):8-23 [PMID: 21601820]
  37. Colloids Surf B Biointerfaces. 2013 Mar 1;103:15-22 [PMID: 23201714]
  38. Biomaterials. 2012 Jun;33(18):4515-25 [PMID: 22445482]
  39. Nanomaterials (Basel). 2020 Sep 25;10(10): [PMID: 32993001]
  40. Adv Healthc Mater. 2014 Dec;3(12):1941-68 [PMID: 25354338]
  41. J Tissue Eng Regen Med. 2017 Aug;11(8):2333-2348 [PMID: 27151571]
  42. Theranostics. 2014 Jun 07;4(8):834-44 [PMID: 24955144]
  43. Colloids Surf B Biointerfaces. 2019 Feb 1;174:42-55 [PMID: 30428431]
  44. Nanoscale. 2015 Feb 7;7(5):1768-75 [PMID: 25515238]
  45. Beilstein J Nanotechnol. 2020 Aug 12;11:1207-1216 [PMID: 32832316]
  46. ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5727-5739 [PMID: 30624889]
  47. Adv Drug Deliv Rev. 2020;163-164:125-144 [PMID: 32092379]
  48. Biomaterials. 2009 Oct;30(30):6041-7 [PMID: 19643474]

Grants

  1. THERMINATOR/Regione Toscana

Word Cloud

Created with Highcharts 10.0.0magneticdrughyperthermiananocarriersreleasepHnanoparticlesconstitutedencapsulatedpH-temperature-responsivepolyN-vinylcaprolactam-co-acrylicacidcontrolledcoremagnetitehighacidicphysiologicalbodytemperaturecandoxorubicinneutraltreatmentstudyreportrealizationdrug-loadedsmartsuperparamagneticironoxidedualcopolymerachievehighlylocalizedflower-likesize164nmpreparedpolyolapproachgoodsaturationmagnetizationspecificabsorptionrateobtainingrevealedreversiblehydration/dehydrationtransitionconditionand/ortemperaturestriggeredefficacysystemprovedloadingencapsulationefficiency>960%doublenaturefacilitatedburstalmostcompleteconditionsnegligibleamountreleasedconfirmingadditionvariationimprovedresultssuggestmulti-stimuli-sensitivenanoplatformpromisingcandidateremote-controlledcombinationcancerSmartMagneticNanocarriersMulti-StimuliOn-DemandDrugDeliverydeliverypH-responsivethermo-responsive

Similar Articles

Cited By