Modeling the Voltage Produced by Ultrasound in Seawater by Stochastic and Artificial Intelligence Methods.

Alina Bărbulescu, Cristian Ștefan Dumitriu
Author Information
  1. Alina Bărbulescu: Department of Civil Engineering, Transylvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania. ORCID
  2. Cristian Ștefan Dumitriu: Department of Installations for Constructions, Transylvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania.

Abstract

Experiments have proved that an electrical signal appears in the ultrasonic cavitation field; its properties are influenced by the ultrasound frequency, the liquid type, and liquid characteristics such as density, viscosity, and surface tension. Still, the features of the signals are not entirely known. Therefore, we present the results on modeling the voltage collected in seawater, in ultrasound cavitation produced by a 20 kHz frequency generator, working at 80 W. Comparisons of the Box-Jenkins approaches, with artificial intelligence methods (GRNN) and hybrid (Wavelet-ARIMA and Wavelet-ANN) are provided, using different goodness of fit indicators. It is shown that the last approach gave the best model.

Keywords

References

  1. Neural Netw. 2013 Jun;42:1-27 [PMID: 23411153]
  2. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13582-13587 [PMID: 27803329]
  3. J Acoust Soc Am. 2016 Oct;140(4):2494 [PMID: 27794293]
  4. Ultrason Sonochem. 2017 Jan;34:663-676 [PMID: 27773293]
  5. Ultrason Sonochem. 2013 Jan;20(1):77-88 [PMID: 22705075]
  6. Ultrason Sonochem. 2020 Sep;66:105092 [PMID: 32259698]
  7. IEEE Trans Neural Netw. 1991;2(6):568-76 [PMID: 18282872]
  8. Proc Math Phys Eng Sci. 2017 Mar;473(2199):20160345 [PMID: 28413332]
  9. Ultrason Sonochem. 2017 Nov;39:301-306 [PMID: 28732949]
  10. Ultrason Sonochem. 2011 Jul;18(4):864-72 [PMID: 21172736]
  11. Sensors (Basel). 2020 May 04;20(9): [PMID: 32375400]
  12. Ultrason Sonochem. 2012 Mar;19(2):217-20 [PMID: 21802973]

MeSH Term

Artificial Intelligence
Incidence
Seawater
Ultrasonography

Word Cloud

Created with Highcharts 10.0.0cavitationultrasoundfrequencyliquidvoltageGRNNWavelet-ARIMAExperimentsprovedelectricalsignalappearsultrasonicfieldpropertiesinfluencedtypecharacteristicsdensityviscositysurfacetensionStillfeaturessignalsentirelyknownThereforepresentresultsmodelingcollectedseawaterproduced20kHzgeneratorworking80WComparisonsBox-JenkinsapproachesartificialintelligencemethodshybridWavelet-ANNprovidedusingdifferentgoodnessfitindicatorsshownlastapproachgavebestmodelModelingVoltageProducedUltrasoundSeawaterStochasticArtificialIntelligenceMethodsGeneralizedRegressionNeuralNetworkautoregressiveintegratedmovingaverageARIMAwavelet-artificialneuralnetworkANN

Similar Articles

Cited By