Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches.

Marco Sandrini, Luca Nerva, Fabiano Sillo, Raffaella Balestrini, Walter Chitarra, Elisa Zampieri
Author Information
  1. Marco Sandrini: Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy.
  2. Luca Nerva: Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy. ORCID
  3. Fabiano Sillo: National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy. ORCID
  4. Raffaella Balestrini: National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy. ORCID
  5. Walter Chitarra: Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy. ORCID
  6. Elisa Zampieri: National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy. ORCID

Abstract

Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes' richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants' fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant-microbiome interactions. These associated microorganisms can increase plants' endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.

Keywords

References

  1. New Phytol. 2016 Jan;209(2):454-7 [PMID: 26763678]
  2. Environ Microbiol. 2004 Sep;6(9):911-20 [PMID: 15305916]
  3. Front Plant Sci. 2018 Feb 09;9:112 [PMID: 29479360]
  4. Curr Biol. 2017 Aug 7;27(15):R770-R783 [PMID: 28787611]
  5. Plant Physiol Biochem. 2019 Apr;137:203-212 [PMID: 30802803]
  6. Genome. 2016 Nov;59(11):913-932 [PMID: 27829306]
  7. Front Plant Sci. 2015 Aug 13;6:636 [PMID: 26322072]
  8. Curr Opin Biotechnol. 2019 Feb;55:1-8 [PMID: 30031961]
  9. J Exp Bot. 2016 Feb;67(4):995-1002 [PMID: 26547794]
  10. Mycorrhiza. 2013 Jan;23(1):71-86 [PMID: 22733451]
  11. Plant Physiol. 2016 Jun;171(2):1009-23 [PMID: 27208301]
  12. Trends Plant Sci. 2016 Oct;21(10):818-822 [PMID: 27507609]
  13. Mol Genet Genomics. 2019 Aug;294(4):985-1000 [PMID: 30968249]
  14. J Appl Microbiol. 2014 Sep;117(3):766-73 [PMID: 24909841]
  15. Front Microbiol. 2020 Feb 04;11:88 [PMID: 32117118]
  16. Curr Opin Microbiol. 2019 Jun;49:34-40 [PMID: 31698159]
  17. BMC Plant Biol. 2011 Nov 17;11:163 [PMID: 22094046]
  18. New Phytol. 2009 Oct;184(2):424-437 [PMID: 19558424]
  19. New Phytol. 2018 Dec;220(4):1296-1308 [PMID: 29424928]
  20. Mycorrhiza. 2014 Nov;24(8):611-25 [PMID: 24770494]
  21. Front Microbiol. 2019 Aug 13;10:1807 [PMID: 31456765]
  22. Ann Bot. 2013 Jul;112(2):347-57 [PMID: 23328767]
  23. J Microbiol Methods. 2021 Jun;185:106215 [PMID: 33839214]
  24. PLoS One. 2014 Nov 11;9(11):e112763 [PMID: 25387008]
  25. Front Plant Sci. 2019 Mar 19;10:264 [PMID: 30941152]
  26. Plant Biol (Stuttg). 2020 Sep;22(5):863-871 [PMID: 32298522]
  27. Biol Bull. 2012 Aug;223(1):21-9 [PMID: 22983030]
  28. Plants (Basel). 2019 Dec 06;8(12): [PMID: 31817760]
  29. Cell Host Microbe. 2018 Oct 10;24(4):475-485 [PMID: 30308154]
  30. Plant J. 2018 Feb;93(4):729-746 [PMID: 29265527]
  31. Proteomics. 2019 Aug;19(16):e1800105 [PMID: 31218790]
  32. Ann Bot. 2009 Dec;104(7):1263-80 [PMID: 19815570]
  33. Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70 [PMID: 15905328]
  34. Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264 [PMID: 30371820]
  35. Front Plant Sci. 2015 Mar 13;6:151 [PMID: 25821453]
  36. J Proteomics. 2014 Apr 14;101:31-42 [PMID: 24530626]
  37. Microb Pathog. 2017 Oct;111:458-467 [PMID: 28923606]
  38. Sci Rep. 2016 May 10;6:25773 [PMID: 27161395]
  39. Front Plant Sci. 2018 Oct 09;9:1480 [PMID: 30356724]
  40. Environ Microbiol. 2010 Aug;12(8):2165-79 [PMID: 21966911]
  41. J Exp Bot. 2021 Jun 22;72(13):5038-5050 [PMID: 33884424]
  42. Photosynth Res. 2019 Mar;139(1-3):227-238 [PMID: 29982909]
  43. Microbiol Res. 2018 Jan;206:131-140 [PMID: 29146250]
  44. Breed Sci. 2021 Feb;71(1):109-116 [PMID: 33762880]
  45. Glob Chang Biol. 2016 Jul;22(7):2596-607 [PMID: 27282323]
  46. Appl Microbiol Biotechnol. 2019 Feb;103(3):1179-1188 [PMID: 30594952]
  47. Front Microbiol. 2016 Jan 19;6:1559 [PMID: 26834714]
  48. Annu Rev Plant Biol. 2013;64:267-91 [PMID: 23451789]
  49. Plant Physiol. 2021 Nov 3;187(3):1117-1130 [PMID: 34618063]
  50. Front Plant Sci. 2020 Feb 25;11:3 [PMID: 32161602]
  51. Front Microbiol. 2017 Aug 25;8:1638 [PMID: 28890716]
  52. Methods Mol Biol. 2020;2146:99-116 [PMID: 32415599]
  53. Sci Rep. 2018 Jun 25;8(1):9625 [PMID: 29941972]
  54. Funct Plant Biol. 2013 Aug;40(9):775-786 [PMID: 32481150]
  55. Curr Genomics. 2020 Aug;21(5):343-362 [PMID: 33093798]
  56. ISME J. 2016 Aug;10(8):2020-32 [PMID: 26859772]
  57. Mol Plant. 2020 Feb 3;13(2):187-214 [PMID: 31981735]
  58. J Exp Bot. 2014 Mar;65(5):1229-40 [PMID: 24253197]
  59. Genome Biol. 2020 Jun 26;21(1):154 [PMID: 32591012]
  60. New Phytol. 2009 Dec;184(4):975-87 [PMID: 19765230]
  61. Sci Rep. 2019 Sep 16;9(1):13309 [PMID: 31527672]
  62. J Syst Evol. 2020 Sep;58(5):533-545 [PMID: 33584833]
  63. Curr Plant Biol. 2020 Jun;22:100149 [PMID: 32494569]
  64. J Adv Res. 2019 Mar 20;19:29-37 [PMID: 31341667]
  65. Front Genet. 2015 Dec 17;6:348 [PMID: 26734060]
  66. Planta. 2018 Mar;247(3):573-585 [PMID: 29124326]
  67. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 [PMID: 30395289]
  68. Front Microbiol. 2015 Jun 23;6:598 [PMID: 26157423]
  69. Nature. 2015 Dec 17;528(7582):340-1 [PMID: 26633626]
  70. Biotechnol Adv. 2016 Nov 15;34(7):1245-1259 [PMID: 27587331]
  71. Appl Environ Microbiol. 2009 Aug;75(15):5111-20 [PMID: 19502440]
  72. mBio. 2015 Mar 24;6(2): [PMID: 25805735]
  73. Nat Rev Microbiol. 2019 Jan;17(2):95-109 [PMID: 30442909]
  74. Microbiol Res. 2021 Jun;247:126726 [PMID: 33640574]
  75. Mycorrhiza. 2021 Nov;31(6):637-653 [PMID: 34657204]
  76. Metabolites. 2020 Dec 10;10(12): [PMID: 33321781]
  77. IMA Fungus. 2019 Aug 8;10:12 [PMID: 32355612]
  78. J Exp Bot. 2015 Sep;66(18):5389-401 [PMID: 26071534]
  79. Front Plant Sci. 2017 Dec 13;8:2124 [PMID: 29326736]
  80. Front Plant Sci. 2019 Jan 07;9:1933 [PMID: 30666264]
  81. Nat Biotechnol. 2017 Sep 12;35(9):833-844 [PMID: 28898207]
  82. Mycologia. 2016 Sep;108(5):1028-1046 [PMID: 27738200]
  83. New Phytol. 2018 Dec;220(4):1322-1336 [PMID: 29982997]
  84. J Am Soc Mass Spectrom. 2016 Dec;27(12):1897-1905 [PMID: 27624161]
  85. J Fungi (Basel). 2021 Apr 15;7(4): [PMID: 33921098]
  86. Rice (N Y). 2020 Sep 15;13(1):67 [PMID: 32930888]
  87. Arch Biochem Biophys. 2005 Dec 15;444(2):139-58 [PMID: 16309626]
  88. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  89. Mycorrhiza. 2017 Jul;27(5):417-430 [PMID: 28101667]
  90. PLoS One. 2020 Sep 22;15(9):e0237975 [PMID: 32960892]
  91. Front Plant Sci. 2019 Apr 12;10:470 [PMID: 31031793]
  92. Plant Biol (Stuttg). 2021 May;23 Suppl 1:50-57 [PMID: 32745347]
  93. Plants (Basel). 2020 Aug 27;9(9): [PMID: 32867243]
  94. Int J Mol Sci. 2018 Jun 13;19(6): [PMID: 29899301]
  95. Sci Rep. 2019 Aug 21;9(1):12158 [PMID: 31434915]
  96. Trends Biochem Sci. 2017 Apr;42(4):274-284 [PMID: 28196646]
  97. Curr Protoc Mol Biol. 2012 Apr;Chapter 30:Unit 30.2.1-24 [PMID: 22470063]
  98. Curr Opin Microbiol. 2016 Jun;31:217-226 [PMID: 27196505]
  99. Front Plant Sci. 2019 Sep 19;10:1068 [PMID: 31608075]
  100. Front Plant Sci. 2019 Sep 25;10:1125 [PMID: 31608085]
  101. Brief Bioinform. 2015 Sep;16(5):745-58 [PMID: 25673291]
  102. Plant J. 2017 Jun;90(5):856-867 [PMID: 27801967]
  103. J Mass Spectrom. 2018 Apr;53(4):287-295 [PMID: 29336521]
  104. Front Plant Sci. 2014 Oct 17;5:562 [PMID: 25368626]
  105. Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43 [PMID: 26609051]
  106. Bot Stud. 2020 Apr 19;61(1):13 [PMID: 32307601]
  107. Microorganisms. 2019 Dec 24;8(1): [PMID: 31878183]

MeSH Term

Actinobacteria
Climate Change
Computational Biology
Crops, Agricultural
Genomics
Metabolomics
Mycorrhizae
Plant Development
Soil Microbiology
Stress, Physiological
Systems Biology

Word Cloud

Created with Highcharts 10.0.0abioticmicroorganismsclimatechangeagriculturestressessupportplant-associatedinnovativeenvironmentsshownActinomycetesarbuscularmycorrhizalfungieffectsplants'willmulti-omicscaninteractionsmechanismsstressNowadaysworldwideexperiencingtransitionprocesstowardsustainableproductionrequiresreductionchemicalinputspreservationmicrobiomes'richnessbiodiversityPlantslongerconsideredstandaloneentitiesfuturegroundedstudypotentialityMoreoverduescenarioresultingrisingincidenceenvironmentallyfriendlytechniqueagroecosystemmanagementrequiredplantsfacinghostilePlant-associatedgreatattitudepromisingtoolimprovesustainabilitydealharshSeveralstudiescarriedrecentyearslookingbeneficialmicrobesbasisevidentAMFconsiderablenumberpositivefitnesshealthGivenpotentialreviewfocusedabilityplantinteractiontechniquesresearchersunearthinghiddenworldplant-microbiomeassociatedincreaseenduranceseveralgrowth-promotingtraitspriming-mediatedtoleranceUsingapproachpossibledeependynamicbelowgroundmicrobiomesgainingfundamentalinformationexploitstaunchalliesweaponscropenemiesthreateningcropsongoingglobalcontextAbioticStressBelowgroundMicrobiome:PotentialOmicsApproachesomicstoolsplant–microbe

Similar Articles

Cited By