Social structure of perennial wasp colonies.

Carl J Dyson, Henry G Crossley, Charles H Ray, Michael A D Goodisman
Author Information
  1. Carl J Dyson: School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA.
  2. Henry G Crossley: School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA.
  3. Charles H Ray: Department of Entomology and Plant Pathology Auburn University Auburn Alabama USA.
  4. Michael A D Goodisman: School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA. ORCID

Abstract

Many social species show variation in their social structure in response to different environmental conditions. For example, colonies of the yellowjacket wasp are typically headed by a single reproductive queen and survive for only a single season. However, in warmer climates, colonies sometimes persist for multiple years and can grow to extremely large size. We used genetic markers to understand patterns of reproduction and recruitment within these perennial colonies. We genotyped workers, pre-reproductive queens, and males from perennial colonies in the southeastern United States at 10 polymorphic microsatellite loci and one mitochondrial DNA locus. We found that from perennial nests were produced by multiple reproductives, in contrast to typical annual colonies. Relatedness of nestmates from perennial colonies was significantly lower than relatedness of nestmates from annual colonies. Our analyses of mitochondrial DNA indicated that most perennial colonies represented semiclosed systems whereby all individuals belonged to a single matriline despite the presence of multiple reproductive females. However, new queens recruited into perennial colonies apparently mated with non-nestmate males. Notably, perennial and annual colonies did not show significant genetic differences, supporting the hypothesis that perennial colony formation represents an instance of social plasticity. Overall, our results indicate that perennial colonies show substantial changes to their social biology compared to typical annual colonies and demonstrate variation in social behaviors in highly social species.

Keywords

Associated Data

Dryad | 10.5061/dryad.rjdfn2zcg

References

  1. Proc Biol Sci. 2015 Jul 7;282(1810): [PMID: 26063845]
  2. J Hered. 2001 Jul-Aug;92(4):346-9 [PMID: 11535648]
  3. Curr Opin Allergy Clin Immunol. 2020 Oct;20(5):438-444 [PMID: 32842036]
  4. Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28894-28898 [PMID: 33139540]
  5. Curr Opin Insect Sci. 2018 Jun;27:21-25 [PMID: 30025630]
  6. Curr Biol. 2014 Mar 31;24(7):R288-94 [PMID: 24698381]
  7. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  8. Bioinformatics. 2012 Oct 1;28(19):2537-9 [PMID: 22820204]
  9. Mol Ecol. 2001 Apr;10(4):1003-10 [PMID: 11348506]
  10. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  11. Evolution. 2005 Jun;59(6):1306-14 [PMID: 16050107]
  12. Biotechniques. 1991 Apr;10(4):506-13 [PMID: 1867860]
  13. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12809-13 [PMID: 19625616]
  14. J Insect Physiol. 2013 Sep;59(9):870-80 [PMID: 23806604]
  15. Mol Phylogenet Evol. 2000 Oct;17(1):108-16 [PMID: 11020309]
  16. Curr Opin Insect Sci. 2021 Aug;46:24-30 [PMID: 33549724]
  17. Evolution. 2007 Sep;61(9):2260-7 [PMID: 17767595]
  18. BMC Evol Biol. 2008 Aug 20;8:239 [PMID: 18715511]
  19. Am Nat. 2004 Dec;164(6):E154-E167 [PMID: 29641925]
  20. Ecol Evol. 2015 Nov 13;5(23):5573-87 [PMID: 27069607]
  21. J Evol Biol. 2012 Jul;25(7):1389-98 [PMID: 22551305]
  22. Trends Ecol Evol. 2009 Jun;24(6):341-9 [PMID: 19328589]
  23. Mol Ecol Resour. 2008 Jan;8(1):103-6 [PMID: 21585727]
  24. J Hered. 2021 Dec 17;112(7):626-634 [PMID: 34558622]
  25. Behav Processes. 2007 Oct;76(2):61-72 [PMID: 17703898]
  26. J Anim Ecol. 2017 Mar;86(2):337-347 [PMID: 28095615]
  27. Mol Ecol. 2007 Jun;16(12):2589-95 [PMID: 17561915]
  28. Bull Entomol Res. 2021 Apr;111(2):174-181 [PMID: 32782046]
  29. Annu Rev Entomol. 2019 Jan 7;64:51-71 [PMID: 30256668]
  30. Ecol Evol. 2022 Feb 10;12(2):e8569 [PMID: 35169451]
  31. Ecology. 2010 Nov;91(11):3294-302 [PMID: 21141190]
  32. Annu Rev Entomol. 2006;51:581-608 [PMID: 16332224]
  33. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  34. Insectes Soc. 2017;64(1):19-37 [PMID: 28255180]
  35. Sci Rep. 2020 Apr 28;10(1):7143 [PMID: 32346041]
  36. Insect Sci. 2018 Feb;25(1):109-116 [PMID: 27358209]
  37. Evol Appl. 2021 Nov 30;14(12):2901-2914 [PMID: 34950236]
  38. Evolution. 1998 Oct;52(5):1416-1422 [PMID: 28565383]
  39. Am Nat. 2009 Jun;173(6):848-53 [PMID: 19355816]
  40. Mol Ecol. 2019 Jul;28(14):3324-3338 [PMID: 31233636]
  41. Environ Entomol. 2012 Dec;41(6):1612-20 [PMID: 23321110]
  42. Behav Ecol Sociobiol. 2016;70:1131-1139 [PMID: 27478300]
  43. Sci Rep. 2021 May 12;11(1):10087 [PMID: 33980970]
  44. Trends Ecol Evol. 2019 Sep;34(9):844-855 [PMID: 31130318]
  45. Naturwissenschaften. 2007 Dec;94(12):1011-4 [PMID: 17653685]
  46. Mol Phylogenet Evol. 2014 Apr;73:190-201 [PMID: 24462637]
  47. Mol Ecol. 2001 Jun;10(6):1423-32 [PMID: 11412365]
  48. Mol Ecol Resour. 2010 May;10(3):551-5 [PMID: 21565056]
  49. Genome Biol Evol. 2021 May 7;13(5): [PMID: 33739390]
  50. Trends Ecol Evol. 1989 Nov;4(11):353-5 [PMID: 21227378]
  51. Curr Biol. 2020 Jan 20;30(2):304-311.e4 [PMID: 31902719]
  52. Nature. 2013 Jan 31;493(7434):664-8 [PMID: 23334415]
  53. Trends Ecol Evol. 2010 May;25(5):275-82 [PMID: 20106547]
  54. Curr Opin Insect Sci. 2014 Nov;5:37-43 [PMID: 32846740]
  55. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

Word Cloud

Created with Highcharts 10.0.0coloniesperennialsocialannualshowwaspsinglereproductivemultipleDNAspeciesvariationstructureyellowjacketHowevergeneticqueensmalesmicrosatellitemitochondrialtypicalnestmatesManyresponsedifferentenvironmentalconditionsexampletypicallyheadedqueensurviveseasonwarmerclimatessometimespersistyearscangrowextremelylargesizeusedmarkersunderstandpatternsreproductionrecruitmentwithingenotypedworkerspre-reproductivesoutheasternUnitedStates10polymorphiclocionelocusfoundnestsproducedreproductivescontrastRelatednesssignificantlylowerrelatednessanalysesindicatedrepresentedsemiclosedsystemswherebyindividualsbelongedmatrilinedespitepresencefemalesnewrecruitedapparentlymatednon-nestmateNotablysignificantdifferencessupportinghypothesiscolonyformationrepresentsinstanceplasticityOverallresultsindicatesubstantialchangesbiologycompareddemonstratebehaviorshighlySocialcytochromebeusocialhymenopterapolyandrypolygyneconflict

Similar Articles

Cited By (4)