A Multiwell-Plate Caenorhabditis elegans Assay for Assessing the Therapeutic Potential of Bacteriophages against Clinical Pathogens.

Prasanth Manohar, Belinda Loh, Namasivayam Elangovan, Archana Loganathan, Ramesh Nachimuthu, Sebastian Leptihn
Author Information
  1. Prasanth Manohar: Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People's Republic of China.
  2. Belinda Loh: Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People's Republic of China. ORCID
  3. Namasivayam Elangovan: Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India.
  4. Archana Loganathan: Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
  5. Ramesh Nachimuthu: Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
  6. Sebastian Leptihn: Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People's Republic of China. ORCID

Abstract

In order to establish phage therapy as a standard clinical treatment for bacterial infections, testing of every phage to ensure the suitability and safety of the biological compound is required. While some issues have been addressed over recent years, standard and easy-to-use animal models to test phages are still rare. Testing of phages in highly suitable mammalian models such as mice is subjected to strict ethical regulations, while insect larvae such as the Galleria mellonella model suffer from batch-to-batch variations and require manual operator skills to inject bacteria, resulting in unreliable experimental outcomes. A much simpler model is the nematode Caenorhabditis elegans, which feeds on bacteria, a fast growing and easy to handle organism that can be used in high-throughput screening. In this study, two clinical bacterial strains of Escherichia coli, one Klebsiella pneumoniae, and one Enterobacter cloacae strain were tested on the model system together with lytic bacteriophages that we isolated previously. We developed a liquid-based assay, in which the efficiency of phage treatment was evaluated using a scoring system based on microscopy and counting of the nematodes, allowing increasing statistical significance compared to other assays such as larvae or mice. Our work demonstrates the potential to use Caenorhabditis elegans to test the virulence of strains of Klebsiella pneumoniae, Enterobacter cloacae, and EHEC/EPEC as well as the efficacy of bacteriophages to treat or prevent infections, allowing a more reliable evaluation for the clinical therapeutic potential of lytic phages. Validating the efficacy and safety of phages prior to clinical application is crucial to see phage therapy in practice. Current animal models include mice and insect larvae, which pose ethical or technical challenges. This study examined the use of the nematode model organism C. elegans as a quick, reliable, and simple alternative for testing phages. The data show that all the four tested bacteriophages can eliminate bacterial pathogens and protect the nematode from infections. Survival rates of the nematodes increased from <20% in the infection group to >90% in the phage treatment group. Even the nematodes with poly-microbial infections recovered during phage cocktail treatment. The use of C. elegans as a simple whole-animal infection model is a rapid and robust way to study the efficacy of phages before testing them on more complex model animals such as mice.

Keywords

References

  1. Emerg Microbes Infect. 2021 Dec;10(1):2205-2219 [PMID: 34736365]
  2. Clin Microbiol Rev. 2019 Jan 16;32(2): [PMID: 30651225]
  3. Microbiologyopen. 2019 Jun;8(6):e00756 [PMID: 30381890]
  4. FEMS Microbiol Rev. 2020 Nov 24;44(6):684-700 [PMID: 32472938]
  5. Mol Immunol. 2008 Mar;45(6):1732-42 [PMID: 17980913]
  6. Curr Opin Microbiol. 2015 Feb;23:94-101 [PMID: 25461579]
  7. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28807909]
  8. BMC Microbiol. 2019 Apr 2;19(1):70 [PMID: 30940074]
  9. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2735-9 [PMID: 11226309]
  10. Microbiol Mol Biol Rev. 2021 Mar 17;85(2): [PMID: 33731489]
  11. Curr Opin Biotechnol. 2021 Apr;68:310-317 [PMID: 33862490]
  12. Cell Microbiol. 2013 Aug;15(8):1313-22 [PMID: 23617769]
  13. J Vis Exp. 2018 Jul 1;(137): [PMID: 30010665]
  14. Appl Environ Microbiol. 2019 Apr 18;85(9): [PMID: 30824445]
  15. Med J Aust. 2020 Apr;212(6):279-285 [PMID: 31587298]
  16. Cell Microbiol. 2001 Jun;3(6):381-93 [PMID: 11422081]
  17. Front Microbiol. 2019 Mar 21;10:574 [PMID: 30949158]
  18. Front Cell Infect Microbiol. 2021 Jun 04;11:643214 [PMID: 34150671]
  19. Front Microbiol. 2020 Jun 03;11:1171 [PMID: 32582107]
  20. Res Vet Sci. 2021 May;136:598-601 [PMID: 33895568]
  21. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10414-10419 [PMID: 16801562]
  22. Front Microbiol. 2019 Jan 18;9:3227 [PMID: 30713528]
  23. BMC Complement Altern Med. 2014 Jan 06;14:4 [PMID: 24393217]
  24. BMC Microbiol. 2018 Aug 31;18(1):97 [PMID: 30170558]
  25. J Bacteriol. 2001 Nov;183(21):6207-14 [PMID: 11591663]
  26. Int J Mol Sci. 2020 May 25;21(10): [PMID: 32466194]
  27. Infect Immun. 2002 Aug;70(8):4705-7 [PMID: 12117988]
  28. Genetics. 1974 May;77(1):71-94 [PMID: 4366476]
  29. PLoS One. 2018 Oct 24;13(10):e0206278 [PMID: 30356310]
  30. Curr Biol. 2000 Nov 30;10(23):1539-42 [PMID: 11114525]
  31. Nat Methods. 2012 Jun 28;9(7):637 [PMID: 22743765]
  32. Appl Environ Microbiol. 2012 Apr;78(7):2075-81 [PMID: 22286994]
  33. Sci Rep. 2020 May 26;10(1):8729 [PMID: 32457411]
  34. Sci Total Environ. 2018 Apr 15;621:990-999 [PMID: 29054666]
  35. Microbiol Mol Biol Rev. 2019 Oct 30;83(4): [PMID: 31666296]
  36. JAC Antimicrob Resist. 2021 Feb 24;3(1):dlab015 [PMID: 34223092]
  37. J Gerontol. 1994 Jul;49(4):B145-56 [PMID: 7516947]
  38. Crit Rev Microbiol. 2020 Feb;46(1):78-99 [PMID: 32091280]
  39. Philos Trans R Soc Lond B Biol Sci. 2018 Jul 19;373(1751): [PMID: 29866922]
  40. Front Microbiol. 2016 Oct 17;7:1622 [PMID: 27799924]

Grants

  1. P40 OD010440/NIH HHS

MeSH Term

Animals
Bacterial Infections
Bacteriophages
Caenorhabditis elegans
Disease Models, Animal
Enterobacter cloacae
Escherichia coli
Humans
Klebsiella pneumoniae
Phage Therapy

Word Cloud

Created with Highcharts 10.0.0phagemodelphageseleganstherapyclinicaltreatmentbacterialinfectionsmiceCaenorhabditisbacteriophagesefficacytestinganimalmodelslarvaenematodestudynematodesuseinfectionstandardsafetytestethicalinsectbacteriaorganismcanstrainsoneKlebsiellapneumoniaeEnterobactercloacaetestedsystemlyticallowingpotentialreliableCsimplepathogensgrouporderestablisheveryensuresuitabilitybiologicalcompoundrequiredissuesaddressedrecentyearseasy-to-usestillrareTestinghighlysuitablemammaliansubjectedstrictregulationsGalleriamellonellasufferbatch-to-batchvariationsrequiremanualoperatorskillsinjectresultingunreliableexperimentaloutcomesmuchsimplerfeedsfastgrowingeasyhandleusedhigh-throughputscreeningtwoEscherichiacolistraintogetherisolatedpreviouslydevelopedliquid-basedassayefficiencyevaluatedusingscoringbasedmicroscopycountingincreasingstatisticalsignificancecomparedassaysworkdemonstratesvirulenceEHEC/EPECwelltreatpreventevaluationtherapeuticValidatingpriorapplicationcrucialseepracticeCurrentincludeposetechnicalchallengesexaminedquickalternativedatashowfoureliminateprotectSurvivalratesincreased<20%>90%Evenpoly-microbialrecoveredcocktailwhole-animalrapidrobustwaycomplexanimalsMultiwell-PlateAssayAssessingTherapeuticPotentialBacteriophagesClinicalPathogensbacteriophage

Similar Articles

Cited By