Working Memory Swap Errors Have Identifiable Neural Representations.

Remington Mallett, Elizabeth S Lorenc, Jarrod A Lewis-Peacock
Author Information
  1. Remington Mallett: University of Texas at Austin.
  2. Elizabeth S Lorenc: University of Texas at Austin.
  3. Jarrod A Lewis-Peacock: University of Texas at Austin. ORCID

Abstract

Working memory is an essential component of cognition that facilitates goal-directed behavior. Famously, it is severely limited and performance suffers when memory load exceeds an individual's capacity. Modeling of visual working memory responses has identified two likely types of errors: guesses and swaps. Swap errors may arise from a misbinding between the features of different items. Alternatively, these errors could arise from memory noise in the feature dimension used for cueing a to-be-tested memory item, resulting in the wrong item being selected. Finally, it is possible that so-called swap errors actually reflect informed guessing, which could occur at the time of a cue, or alternatively, at the time of the response. Here, we combined behavioral response modeling and fMRI pattern analysis to test the hypothesis that swap errors involve the active maintenance of an incorrect memory item. After the encoding of six spatial locations, a retro-cue indicated which location would be tested after memory retention. On accurate trials, we could reconstruct a memory representation of the cued location in both early visual cortex and intraparietal sulcus. On swap error trials identified with mixture modeling, we were able to reconstruct a representation of the swapped location, but not of the cued location, suggesting the maintenance of the incorrect memory item before response. Moreover, participants subjectively responded with some level of confidence, rather than complete guessing, on a majority of swap error trials. Together, these results suggest that swap errors are not mere response-phase guesses, but instead result from failures of selection in working memory, contextual binding errors, or informed guesses, which produce active maintenance of incorrect memory representations.

References

  1. Nat Neurosci. 2019 Aug;22(8):1336-1344 [PMID: 31263205]
  2. Nature. 1997 Nov 20;390(6657):279-81 [PMID: 9384378]
  3. Cereb Cortex. 2015 Oct;25(10):3911-31 [PMID: 25452571]
  4. Nature. 2008 May 8;453(7192):233-5 [PMID: 18385672]
  5. J Vis. 2012 Apr 20;12(4): [PMID: 22523399]
  6. Psychol Bull. 2016 Jul;142(7):758-99 [PMID: 26950009]
  7. J Vis. 2009 Sep 09;9(10):7.1-11 [PMID: 19810788]
  8. Trends Cogn Sci. 2013 Aug;17(8):391-400 [PMID: 23850263]
  9. J Vis. 2012 Dec 21;12(13):21 [PMID: 23262153]
  10. Trends Cogn Sci. 2017 Jul;21(7):493-497 [PMID: 28549826]
  11. Trends Cogn Sci. 2015 Apr;19(4):215-26 [PMID: 25769502]
  12. PLoS One. 2012;7(10):e48214 [PMID: 23118956]
  13. Nat Neurosci. 2013 Aug;16(8):997-9 [PMID: 23817547]
  14. Trends Cogn Sci. 2021 Mar;25(3):228-239 [PMID: 33397602]
  15. Front Neuroinform. 2011 Aug 22;5:13 [PMID: 21897815]
  16. Front Neuroinform. 2009 Jan 15;2:10 [PMID: 19198666]
  17. Cogn Psychol. 1982 Jan;14(1):107-41 [PMID: 7053925]
  18. J Neurosci. 2015 Feb 25;35(8):3360-9 [PMID: 25716836]
  19. Nat Neurosci. 2016 Jan;19(1):150-7 [PMID: 26595654]
  20. Br J Psychol. 2019 May;110(2):207-244 [PMID: 30295318]
  21. Nat Protoc. 2020 Jul;15(7):2186-2202 [PMID: 32514178]
  22. Nat Hum Behav. 2020 Nov;4(11):1156-1172 [PMID: 32895546]
  23. Brain. 2014 Aug;137(Pt 8):2303-11 [PMID: 24919969]
  24. Sci Rep. 2016 Jan 13;6:19203 [PMID: 26758902]
  25. Front Neuroinform. 2014 Feb 21;8:14 [PMID: 24600388]
  26. J Vis. 2014 Mar 19;14(3):22 [PMID: 24648192]
  27. J Cogn Neurosci. 2003 Nov 15;15(8):1176-94 [PMID: 14709235]
  28. Trends Cogn Sci. 2017 Feb;21(2):111-124 [PMID: 28063661]
  29. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  30. Q J Exp Psychol (Hove). 2014;67(1):3-15 [PMID: 23663175]
  31. Nat Methods. 2019 Jan;16(1):111-116 [PMID: 30532080]
  32. J Cogn Neurosci. 2013 May;25(5):754-61 [PMID: 23469889]
  33. Front Hum Neurosci. 2016 Nov 24;10:594 [PMID: 27932963]
  34. Atten Percept Psychophys. 2014 Oct;76(7):1902-13 [PMID: 25190322]
  35. J Neurosci. 2009 Nov 4;29(44):13992-4003 [PMID: 19890009]
  36. Nature. 2006 Mar 2;440(7080):91-5 [PMID: 16382240]
  37. Cereb Cortex. 2018 Apr 1;28(4):1432-1438 [PMID: 29329385]
  38. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  39. PLoS Comput Biol. 2015 Jan 22;11(1):e1004003 [PMID: 25611204]
  40. J Neurosci Methods. 2007 May 15;162(1-2):8-13 [PMID: 17254636]
  41. Atten Percept Psychophys. 2015 Nov;77(8):2562-9 [PMID: 26163064]
  42. J Vis. 2004 Dec 29;4(12):1120-35 [PMID: 15669916]
  43. Nat Neurosci. 2013 Dec;16(12):1879-87 [PMID: 24212672]
  44. Psychol Aging. 2013 Sep;28(3):729-43 [PMID: 23978008]
  45. Nature. 1997 Apr 10;386(6625):608-11 [PMID: 9121584]
  46. Atten Percept Psychophys. 2020 Jun;82(3):1258-1270 [PMID: 31758526]
  47. J Neurosci. 2017 Apr 5;37(14):3913-3925 [PMID: 28270569]
  48. Cortex. 2016 Oct;83:181-93 [PMID: 27565636]
  49. Atten Percept Psychophys. 2014 Oct;76(7):2136-57 [PMID: 24634029]
  50. Trends Cogn Sci. 2015 Aug;19(8):431-8 [PMID: 26160026]
  51. Neuron. 2016 Aug 3;91(3):694-707 [PMID: 27497224]
  52. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  53. Neuroscience. 2006 Apr 28;139(1):173-80 [PMID: 16326021]
  54. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  55. eNeuro. 2018 Jun 5;5(3): [PMID: 29876523]
  56. Curr Biol. 2014 Sep 22;24(18):2174-2180 [PMID: 25201683]
  57. Psychol Bull. 2018 Sep;144(9):885-958 [PMID: 30148379]
  58. Neuroimage. 2009 Oct 15;48(1):63-72 [PMID: 19573611]
  59. Psychol Rev. 2014 Jan;121(1):124-49 [PMID: 24490791]
  60. Neuroimage. 2010 Oct 1;52(4):1611-20 [PMID: 20493955]
  61. Brain Cogn. 2010 Apr;72(3):368-77 [PMID: 19962813]
  62. Psychol Rev. 2017 Jan;124(1):21-59 [PMID: 27869455]
  63. J Exp Psychol Gen. 2002 Mar;131(1):48-64 [PMID: 11900102]
  64. J Neurosci. 2018 Jun 6;38(23):5267-5276 [PMID: 29739867]
  65. Atten Percept Psychophys. 2017 Jul;79(5):1506-1523 [PMID: 28470554]
  66. Psychol Sci. 2014 May 1;25(5):1067-78 [PMID: 24647672]
  67. Neuroimage. 2010 Dec;53(4):1181-96 [PMID: 20637289]
  68. Brain. 2009 Apr;132(Pt 4):1057-66 [PMID: 19293236]
  69. Psychon Bull Rev. 2019 Jun;26(3):958-966 [PMID: 30242631]
  70. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):883-90 [PMID: 9448255]
  71. Psychol Rev. 2017 Mar;124(2):197-214 [PMID: 28221087]
  72. Curr Opin Neurobiol. 1996 Apr;6(2):171-8 [PMID: 8725958]
  73. eNeuro. 2020 Nov 30;7(6): [PMID: 33257529]
  74. Nat Neurosci. 2014 Mar;17(3):347-56 [PMID: 24569831]
  75. J Cogn Neurosci. 2000 Sep;12(5):840-7 [PMID: 11054925]
  76. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]
  77. J Neurosci. 2018 May 2;38(18):4357-4366 [PMID: 29636395]
  78. Trends Cogn Sci. 2017 Jun;21(6):449-461 [PMID: 28454719]

Grants

  1. R01 EY028746/NEI NIH HHS

MeSH Term

Cues
Humans
Magnetic Resonance Imaging
Memory, Short-Term
Parietal Lobe
Visual Perception

Word Cloud

Created with Highcharts 10.0.0memoryerrorsswapitemlocationguessesresponsemaintenanceincorrecttrialsWorkingvisualworkingidentifiedSwapariseinformedguessingtimemodelingactivereconstructrepresentationcuederroressentialcomponentcognitionfacilitatesgoal-directedbehaviorFamouslyseverelylimitedperformancesuffersloadexceedsindividual'scapacityModelingresponsestwolikelytypeserrors:swapsmaymisbindingfeaturesdifferentitemsAlternativelynoisefeaturedimensionusedcueingto-be-testedresultingwrongselectedFinallypossibleso-calledactuallyreflectoccurcuealternativelycombinedbehavioralfMRIpatternanalysistesthypothesisinvolveencodingsixspatiallocationsretro-cueindicatedtestedretentionaccurateearlycortexintraparietalsulcusmixtureableswappedsuggestingMoreoverparticipantssubjectivelyrespondedlevelconfidencerathercompletemajorityTogetherresultssuggestmereresponse-phaseinsteadresultfailuresselectioncontextualbindingproducerepresentationsMemoryErrorsIdentifiableNeuralRepresentations

Similar Articles

Cited By