Toxicological impact of SARS-CoV-2 on the health of the neotropical fish, Poecilia reticulata.

Guilherme Malafaia, Mohamed Ahmed Ibrahim Ahmed, Sindoval Silva de Souza, Fernanda Neves Estrela Rezende, Ítalo Nascimento Freitas, Thiarlen Marinho da Luz, Abner Marcelino da Silva, Ives Charlie-Silva, Helyson Lucas Bezerra Braz, Roberta Jeane Bezerra Jorge, Paulo R S Sanches, Juliana Moreira Mendonça-Gomes, Eduardo M Cilli, Amanda Pereira da Costa Araújo
Author Information
  1. Guilherme Malafaia: Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-Graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia MG, Brazil. Electronic address: guilhermeifgoiano@gmail.com.
  2. Mohamed Ahmed Ibrahim Ahmed: Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt.
  3. Sindoval Silva de Souza: Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil.
  4. Fernanda Neves Estrela Rezende: Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil.
  5. Ítalo Nascimento Freitas: Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil.
  6. Thiarlen Marinho da Luz: Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil.
  7. Abner Marcelino da Silva: Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil.
  8. Ives Charlie-Silva: Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil.
  9. Helyson Lucas Bezerra Braz: Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil.
  10. Roberta Jeane Bezerra Jorge: Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil.
  11. Paulo R S Sanches: Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil.
  12. Juliana Moreira Mendonça-Gomes: Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo; São Paulo, SP, Brazil.
  13. Eduardo M Cilli: Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil.
  14. Amanda Pereira da Costa Araújo: Post-Graduation Programa in Environmental Sciences, Federal University of Goiás, GO, Brazil.

Abstract

There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (HO), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.

Keywords

References

  1. Cell. 2021 Jan 21;184(2):460-475.e21 [PMID: 33278358]
  2. J Toxicol Environ Health A. 2015;78(4):278-86 [PMID: 25674829]
  3. Front Psychol. 2020 Oct 02;11:577684 [PMID: 33132986]
  4. Behav Processes. 2013 Jan;92:88-98 [PMID: 23123970]
  5. Gen Comp Endocrinol. 2019 Aug 1;279:53-59 [PMID: 30395803]
  6. Environ Toxicol Chem. 2008 Sep;27(9):1979-85 [PMID: 19086321]
  7. Cell Mol Immunol. 2021 May;18(5):1305-1307 [PMID: 33742186]
  8. Clin Chem. 1978 Dec;24(12):2161-5 [PMID: 719864]
  9. PLoS One. 2011;6(9):e24416 [PMID: 21957449]
  10. Environ Dev Sustain. 2021;23(4):5005-5015 [PMID: 32837273]
  11. Sci Total Environ. 2020 Dec 20;749:141364 [PMID: 32836117]
  12. Algorithms Mol Biol. 2014 Mar 06;9(1):4 [PMID: 24602402]
  13. MMWR Morb Mortal Wkly Rep. 2021 Feb 05;70(5):162-166 [PMID: 33539336]
  14. J Environ Public Health. 2021 Jan 30;2021:6614565 [PMID: 33564314]
  15. Front Immunol. 2020 Jun 05;11:1312 [PMID: 32582222]
  16. Environ Sci Pollut Res Int. 2021 May 3;: [PMID: 33942263]
  17. Braz J Biol. 2009 Feb;69(1):41-8 [PMID: 19347144]
  18. Pan Afr Med J. 2020 Apr 29;35(Suppl 2):12 [PMID: 32528623]
  19. J Chromatogr A. 2019 Mar 15;1588:163-168 [PMID: 30626502]
  20. Mediators Inflamm. 2020 Dec 2;2020:8829674 [PMID: 33343232]
  21. Protein J. 2020 Dec;39(6):644-656 [PMID: 33106987]
  22. J Hazard Mater. 2021 Oct 5;419:126463 [PMID: 34216962]
  23. Methods Enzymol. 1996;266:383-402 [PMID: 8743695]
  24. Arch Virol. 2017 Apr;162(4):907-917 [PMID: 28039563]
  25. J Psychopharmacol. 2020 Dec;34(12):1449-1456 [PMID: 32854587]
  26. J Comp Psychol. 2008 Nov;122(4):344-356 [PMID: 19014258]
  27. Cytokine. 2020 Sep;133:155143 [PMID: 32460144]
  28. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  29. Arch Med Res. 2020 Jul;51(5):384-387 [PMID: 32402576]
  30. World Dev. 2021 Apr;140:105287 [PMID: 34305264]
  31. Environ Toxicol Pharmacol. 2020 Apr;75:103311 [PMID: 31841724]
  32. Behav Brain Res. 2010 Apr 2;208(2):509-15 [PMID: 20043955]
  33. J Environ Sci (China). 2022 Feb;112:115-120 [PMID: 34955194]
  34. Sci Total Environ. 2020 Aug 10;729:139031 [PMID: 32387777]
  35. Virol Sin. 2021 Oct;36(5):1077-1079 [PMID: 33939128]
  36. Int J Hosp Manag. 2021 Feb;93:102764 [PMID: 36919175]
  37. Int Immunopharmacol. 2021 Jan;90:107233 [PMID: 33290963]
  38. Sci Total Environ. 2021 Apr 10;764:142929 [PMID: 33131867]
  39. PLoS One. 2019 Sep 16;14(9):e0222261 [PMID: 31525738]
  40. J Pept Sci. 2016 Jan;22(1):4-27 [PMID: 26785684]
  41. J Hazard Mater. 2021 Feb 5;403:123879 [PMID: 33264950]
  42. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Mar 2;106:110171 [PMID: 33186638]
  43. Aquat Toxicol. 2008 Nov 21;90(3):161-71 [PMID: 18929415]
  44. Clin Chem. 1973 May;19(5):476-82 [PMID: 4703655]
  45. Sci Total Environ. 2021 Jul 10;777:145997 [PMID: 33676209]
  46. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  47. Med Hypotheses. 2020 Oct;143:110102 [PMID: 32721799]
  48. Chem Eng J. 2021 Feb 1;405:126683 [PMID: 32834764]
  49. J Environ Health Sci Eng. 2021 Mar 18;19(1):831-836 [PMID: 33758671]
  50. Biochem Pharmacol. 1961 Jul;7:88-95 [PMID: 13726518]
  51. Environ Toxicol Pharmacol. 2021 Jan;81:103521 [PMID: 33132197]
  52. Food Secur. 2021;13(1):25-37 [PMID: 33173548]
  53. Environ Sci Technol. 2012 Jan 3;46(1):69-77 [PMID: 21793489]
  54. Fish Physiol Biochem. 2016 Apr;42(2):711-47 [PMID: 26607273]
  55. Chemosphere. 2021 Nov;282:130993 [PMID: 34118627]
  56. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  57. Front Immunol. 2021 Mar 25;12:652470 [PMID: 33841435]
  58. Appl Energy. 2021 Apr 1;287:116565 [PMID: 34608347]
  59. Sci Total Environ. 2021 Jul 15;778:146220 [PMID: 33711590]
  60. Environ Pollut. 2021 Nov 15;289:117818 [PMID: 34333265]
  61. Science. 2020 Jul 24;369(6502):413-422 [PMID: 32532802]
  62. Methods Enzymol. 1997;289:67-83 [PMID: 9353718]
  63. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  64. Cell Tissue Res. 2018 Mar;371(3):505-516 [PMID: 29327081]
  65. Sci Total Environ. 2020 Nov 15;743:140621 [PMID: 32758821]
  66. Sci Total Environ. 2021 Jan 1;750:141514 [PMID: 32835961]
  67. J Biol Chem. 1949 Feb;177(2):751-66 [PMID: 18110453]
  68. An Acad Bras Cienc. 2018 Oct-Dec;90(4):3403-3414 [PMID: 30365708]
  69. JMIR Public Health Surveill. 2020 Sep 18;6(3):e19630 [PMID: 32589149]
  70. Neuro Endocrinol Lett. 2009;30 Suppl 1:2-12 [PMID: 20027135]

MeSH Term

Acetylcholinesterase
Animals
COVID-19
Catalase
Ecosystem
Humans
Hydrogen Peroxide
Molecular Docking Simulation
Pandemics
Poecilia
SARS-CoV-2
Spike Glycoprotein, Coronavirus
Superoxide Dismutase
Water Pollutants, Chemical

Chemicals

Spike Glycoprotein, Coronavirus
Water Pollutants, Chemical
spike protein, SARS-CoV-2
Hydrogen Peroxide
Catalase
Superoxide Dismutase
Acetylcholinesterase

Word Cloud

Created with Highcharts 10.0.0peptidesSARS-CoV-2healthincreasedenzymesCOVID-19presencefreshwaterstudyPoeciliareticulataproteinanimalsexposedAChEactivitySODCATparticlesfishsignificantimpactscurrentpandemicsocietyincludinghigheconomiccostsHoweverlittleknownpotentialecologicalrisksvirusdespitesystemsaimedevaluateexposurejuvenilestwoderivedSpikesynthesizedlaboratorynamedPSPD-2002PSPD-200335daysconcentration40 µg/Ldifferenttoxicitybiomarkersassesseddataindicatedableinduceanxiety-likebehavioropenfieldtestacetylcholinesterasebiometricevaluationalsorevealeddisplayedalterationspatterngrowth/developmentFurthermoresuperoxidedismutasecatalaseaccompaniedlevelsmalondialdehydeMDAreactiveoxygenspeciesROShydrogenperoxideHOsuggestsredoximbalanceinducedspikeMoreovermoleculardockinganalysissuggestedstronginteractionallowingusinferobservedeffectsrelateddirectactionfunctionalityConsequentlyprovidedevidenceviralecosystemsofferriskaquaticorganismsToxicologicalimpactneotropicalBehaviorFishREDOXunbalanceViralWaterpollution

Similar Articles

Cited By