Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration.

Yingxi Cao, Yu Xia, Joseph J Balowski, Jianhong Ou, Lingyun Song, Alexias Safi, Timothy Curtis, Gregory E Crawford, Kenneth D Poss, Jingli Cao
Author Information
  1. Yingxi Cao: Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA. ORCID
  2. Yu Xia: Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA.
  3. Joseph J Balowski: Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
  4. Jianhong Ou: Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA. ORCID
  5. Lingyun Song: Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
  6. Alexias Safi: Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
  7. Timothy Curtis: Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
  8. Gregory E Crawford: Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
  9. Kenneth D Poss: Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
  10. Jingli Cao: Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA.

Abstract

The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.

Keywords

References

  1. Science. 2002 Dec 13;298(5601):2188-90 [PMID: 12481136]
  2. Development. 2020 Jul 30;147(14): [PMID: 32665240]
  3. Dev Biol. 2021 Nov;479:11-22 [PMID: 34310924]
  4. Development. 2012 Jun;139(11):1921-30 [PMID: 22513374]
  5. Nat Commun. 2017 May 03;8:15151 [PMID: 28466843]
  6. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  7. Nature. 2015 Sep 24;525(7570):479-85 [PMID: 26375005]
  8. Dev Cell. 2018 Apr 23;45(2):153-169.e6 [PMID: 29689192]
  9. Dev Cell. 2019 Nov 18;51(4):503-515.e4 [PMID: 31743664]
  10. Development. 2016 Jan 15;143(2):232-43 [PMID: 26657776]
  11. Nature. 2018 Feb 8;554(7691):239-243 [PMID: 29420474]
  12. Elife. 2016 Feb 03;5: [PMID: 26840050]
  13. Development. 2011 Aug;138(16):3421-30 [PMID: 21752928]
  14. Dev Dyn. 2021 Sep;250(9):1330-1339 [PMID: 33064344]
  15. Development. 2013 Feb 1;140(3):660-6 [PMID: 23293297]
  16. Dev Cell. 2024 Feb 5;59(3):351-367.e6 [PMID: 38237592]
  17. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  18. Development. 2018 Jun 26;145(12): [PMID: 29945988]
  19. Nature. 2012 Jan 04;481(7381):389-93 [PMID: 22217937]
  20. Nucleic Acids Res. 2013 Aug;41(15):e151 [PMID: 23814184]
  21. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  22. Development. 2011 Jul;138(14):2895-902 [PMID: 21653610]
  23. Nat Rev Genet. 2013 Apr;14(4):288-95 [PMID: 23503198]
  24. Dev Biol. 2013 Oct 15;382(2):427-35 [PMID: 23988577]
  25. J Biol Chem. 2005 Apr 8;280(14):14122-9 [PMID: 15671031]
  26. Dev Cell. 2016 Jan 11;36(1):36-49 [PMID: 26748692]
  27. J Clin Invest. 2001 Nov;108(9):1359-67 [PMID: 11696581]
  28. Nature. 2015 Jun 11;522(7555):226-230 [PMID: 25938716]
  29. Nat Rev Genet. 2021 May;22(5):324-336 [PMID: 33442000]
  30. Elife. 2015 Apr 01;4: [PMID: 25830562]
  31. Nature. 2016 Apr 14;532(7598):201-6 [PMID: 27049946]
  32. Front Cell Dev Biol. 2021 Jan 28;9:625340 [PMID: 33585481]
  33. Nat Rev Cardiol. 2018 Oct;15(10):631-647 [PMID: 29950578]
  34. Science. 2020 Sep 4;369(6508): [PMID: 32883834]
  35. Cell. 2013 Nov 7;155(4):934-47 [PMID: 24119843]
  36. Dev Biol. 2014 Feb 1;386(1):204-15 [PMID: 24380800]
  37. Circulation. 2019 Sep 9;140(10):864-879 [PMID: 31259610]
  38. Circulation. 2019 May 21;139(21):2495-2498 [PMID: 31107624]
  39. Aging Dis. 2021 Apr 1;12(2):552-569 [PMID: 33815882]
  40. Science. 2012 Dec 21;338(6114):1599-603 [PMID: 23160954]
  41. Circulation. 2019 May 21;139(21):2491-2494 [PMID: 31107623]
  42. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  43. J Fish Biol. 2009 Feb;74(2):452-7 [PMID: 20735570]
  44. Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8805-8810 [PMID: 30104362]
  45. Cell Signal. 2016 Dec;28(12):1842-1851 [PMID: 27575743]
  46. Gene. 2000 Sep 19;255(2):185-94 [PMID: 11024278]
  47. Genome Res. 2018 Dec;28(12):1852-1866 [PMID: 30459214]
  48. Elife. 2017 May 17;6: [PMID: 28513431]
  49. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  50. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  51. Biomed Res Int. 2014;2014:925350 [PMID: 24864265]
  52. J Mol Biol. 2016 Sep 25;428(19):3850-68 [PMID: 27515397]
  53. Dev Cell. 2017 Sep 25;42(6):600-615.e4 [PMID: 28950101]
  54. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  55. BMC Bioinformatics. 2010 May 11;11:237 [PMID: 20459804]
  56. Dev Cell. 2020 Mar 9;52(5):574-590.e6 [PMID: 32084358]
  57. Elife. 2021 Mar 26;10: [PMID: 33770473]
  58. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  59. Nucleic Acids Res. 2019 Jan 8;47(D1):D867-D873 [PMID: 30407545]
  60. Nat Methods. 2019 Jun;16(6):453-454 [PMID: 31133757]
  61. Ann Clin Transl Neurol. 2018 Mar 26;5(5):559-569 [PMID: 29761119]
  62. PLoS Genet. 2019 Dec 12;15(12):e1008525 [PMID: 31830033]
  63. Dev Cell. 2017 Dec 18;43(6):659-672.e5 [PMID: 29257949]
  64. Front Cell Dev Biol. 2020 Jun 05;8:457 [PMID: 32582717]
  65. Bioinformatics. 2019 Feb 15;35(4):703-705 [PMID: 30052798]
  66. Dev Cell. 2011 Mar 15;20(3):397-404 [PMID: 21397850]
  67. Cell. 2018 Jan 25;172(3):491-499.e15 [PMID: 29358049]
  68. Genome Res. 2008 Apr;18(4):622-30 [PMID: 18296487]
  69. Curr Drug Targets. 2011 Aug;12(9):1235-44 [PMID: 21443466]
  70. Genome Biol. 2020 Feb 27;21(1):52 [PMID: 32106888]
  71. Dev Biol. 2012 Oct 15;370(2):173-86 [PMID: 22877945]
  72. Development. 2020 Dec 23;147(24): [PMID: 33246928]
  73. Dev Cell. 2017 Feb 27;40(4):392-404.e5 [PMID: 28245924]
  74. Stem Cell Res. 2014 Nov;13(3 Pt B):683-92 [PMID: 24933704]
  75. Development. 2021 Oct 1;148(19): [PMID: 34486669]
  76. Development. 2020 Apr 27;147(8): [PMID: 32341028]
  77. Circ Res. 2020 Jun 5;126(12):1760-1778 [PMID: 32312172]
  78. Cell. 2006 Nov 3;127(3):607-19 [PMID: 17081981]

Grants

  1. R01 HL131319/NHLBI NIH HHS
  2. R35 HL150713/NHLBI NIH HHS
  3. 18CDA34110108/American Heart Association-American Stroke Association
  4. R01 HL155607/NHLBI NIH HHS

MeSH Term

Animals
Animals, Genetically Modified
Chromatin
Enhancer Elements, Genetic
GTP-Binding Protein alpha Subunits, Gi-Go
Gene Expression Regulation
Heart
Larva
Nerve Tissue Proteins
Neural Cell Adhesion Molecules
Pericardium
Regeneration
Zebrafish
Zebrafish Proteins

Chemicals

Chromatin
Nerve Tissue Proteins
Neural Cell Adhesion Molecules
Zebrafish Proteins
ncam1a protein, zebrafish
GTP-Binding Protein alpha Subunits, Gi-Go

Word Cloud

Created with Highcharts 10.0.0epicardialregenerationgeneexpressionTREEsheartelementstissuezebrafishprogramsenhancerinjury-inducedchromatinaccessibilityheartscandidateincreasedtransgeniclinestwoindependentlinkedregulationregulatoryepicardiummesotheliallayerenvelopsCardiacinjuryactivatesdynamicenablessubsequentparacrinevascularizingeffectsidentifycontrolprofiledtranscriptomescellspurifiedregeneratingidentifiedhundredsdefinednon-codingneargenesSeveralincorporatedstablefivesixdirectingontogeneticlarvalWhereasgnai3showedsimilarfunctionalfeaturesncam1a-linkeddirecteddistinctspatiotemporaldomainsThusmultiplecanpossesseithermatchingcomplementarycontrolsstudyprovidesnewresourceprinciplesunderstandinggeneticarticleassociated'Thepeoplebehindpapers'interviewIdentificationdirectATAC-seqEnhancerEpicardiumHeartTREEZebrafish

Similar Articles

Cited By