Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives.

Lisa M Becker, Shiau-Haln Chen, Julie Rodor, Laura P M H de Rooij, Andrew H Baker, Peter Carmeliet
Author Information
  1. Lisa M Becker: Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.
  2. Shiau-Haln Chen: The Queens Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK. ORCID
  3. Julie Rodor: The Queens Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK. ORCID
  4. Laura P M H de Rooij: Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.
  5. Andrew H Baker: The Queens Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK. ORCID
  6. Peter Carmeliet: Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.

Abstract

Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1996-2001 [PMID: 11854497]
  2. Science. 2021 Jan 22;371(6527): [PMID: 33479125]
  3. Circulation. 2020 Nov 10;142(19):1848-1862 [PMID: 32929989]
  4. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1527-31 [PMID: 11830668]
  5. Nature. 2018 Feb 22;554(7693):475-480 [PMID: 29443965]
  6. Cancer Cell. 2009 Mar 3;15(3):167-70 [PMID: 19249675]
  7. Proteomics. 2018 Sep;18(18):e1700312 [PMID: 29644800]
  8. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  9. Methods Mol Biol. 2018;1846:309-324 [PMID: 30242769]
  10. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3405-3414 [PMID: 32005712]
  11. Nat Cell Biol. 2021 Jan;23(1):87-98 [PMID: 33420488]
  12. Nat Immunol. 2019 Feb;20(2):163-172 [PMID: 30643263]
  13. EMBO Mol Med. 2020 Mar 6;12(3):e10606 [PMID: 31951107]
  14. Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2): [PMID: 32054662]
  15. Elife. 2020 Feb 24;9: [PMID: 32091393]
  16. Elife. 2017 Dec 05;6: [PMID: 29206104]
  17. Nat Commun. 2021 Jun 17;12(1):3731 [PMID: 34140477]
  18. Database (Oxford). 2020 Nov 28;2020: [PMID: 33247933]
  19. Nature. 1993 Apr 29;362(6423):841-4 [PMID: 7683111]
  20. Nucleic Acids Res. 2021 Apr 19;49(7):e42 [PMID: 33524142]
  21. Front Genet. 2021 Feb 17;12:590377 [PMID: 33679877]
  22. Nature. 1996 Mar 28;380(6572):364-6 [PMID: 8598934]
  23. Oncol Res Treat. 2018;41(4):166-171 [PMID: 29562226]
  24. Cell. 2011 Sep 16;146(6):873-87 [PMID: 21925313]
  25. Cell. 2020 Feb 20;180(4):764-779.e20 [PMID: 32059779]
  26. Cardiovasc Res. 2020 Jul 1;116(8):1446-1457 [PMID: 31589297]
  27. Front Immunol. 2018 Oct 01;9:2191 [PMID: 30327649]
  28. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14765-70 [PMID: 8962129]
  29. Nat Biotechnol. 2017 Oct;35(10):936-939 [PMID: 28854175]
  30. Brief Funct Genomics. 2018 Jul 1;17(4):233-239 [PMID: 29126257]
  31. Neurobiol Dis. 2017 Nov;107:41-56 [PMID: 27425887]
  32. Circ Res. 2007 Feb 2;100(2):158-73 [PMID: 17272818]
  33. Cell Mol Life Sci. 2020 Dec;77(24):5299-5320 [PMID: 32166394]
  34. Nat Med. 2019 Aug;25(8):1280-1289 [PMID: 31359001]
  35. Cell. 2013 Aug 1;154(3):651-63 [PMID: 23911327]
  36. Eur Heart J. 2020 May 14;41(19):1804-1806 [PMID: 32293672]
  37. Dev Biol. 2019 Mar 1;447(1):90-102 [PMID: 29224892]
  38. J Clin Oncol. 2012 Nov 10;30(32):4026-34 [PMID: 23008289]
  39. Cell Res. 2020 Sep;30(9):763-778 [PMID: 32541867]
  40. Oncoimmunology. 2015 May 7;4(6):e1008791 [PMID: 26155419]
  41. Cell Rep. 2020 Dec 8;33(10):108472 [PMID: 33296652]
  42. Biol Pharm Bull. 2019;42(10):1609-1619 [PMID: 31582649]
  43. Arterioscler Thromb Vasc Biol. 2020 Dec;40(12):2910-2921 [PMID: 33086873]
  44. Cardiovasc Res. 2005 May 1;66(2):286-94 [PMID: 15820197]
  45. Br J Cancer. 2012 Sep 4;107(6):977-87 [PMID: 22892389]
  46. J Am Coll Cardiol. 2019 Jan 22;73(2):190-209 [PMID: 30654892]
  47. Cell Rep. 2019 Mar 12;26(11):3116-3131.e5 [PMID: 30865898]
  48. Blood. 2006 Dec 15;108(13):4018-24 [PMID: 16926294]
  49. Cell. 2010 May 14;141(4):559-63 [PMID: 20478246]
  50. J Physiol. 2020 Jul;598(14):2923-2939 [PMID: 30816576]
  51. Am J Physiol Renal Physiol. 2005 Jun;288(6):F1290-300 [PMID: 15657302]
  52. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  53. Database (Oxford). 2019 Jan 1;2019: [PMID: 30951143]
  54. CA Cancer J Clin. 2010 Jul-Aug;60(4):222-43 [PMID: 20554717]
  55. Nat Methods. 2017 Sep;14(9):865-868 [PMID: 28759029]
  56. Nucleic Acids Res. 2019 Jan 8;47(D1):D900-D908 [PMID: 30329142]
  57. Development. 2020 Aug 12;147(15): [PMID: 32792338]
  58. Eur J Cell Biol. 2018 Sep;97(7):493-500 [PMID: 30082099]
  59. Cell Rep. 2020 Dec 15;33(11):108491 [PMID: 33326796]
  60. Nature. 2019 Jun;570(7761):332-337 [PMID: 31042697]
  61. Nature. 2019 Oct;574(7777):187-192 [PMID: 31597973]
  62. Nat Rev Cancer. 2012 Oct;12(10):699-709 [PMID: 23001349]
  63. Cell. 2016 May 5;165(4):780-91 [PMID: 27153492]
  64. J Immunol. 2017 May 1;198(9):3375-3379 [PMID: 28416714]
  65. Nature. 2019 Feb;566(7745):490-495 [PMID: 30787436]
  66. Blood. 1990 Jun 15;75(12):2417-26 [PMID: 1693532]
  67. Am J Respir Crit Care Med. 2021 Apr 15;203(8):1006-1022 [PMID: 33021809]
  68. Invest Ophthalmol Vis Sci. 1997 Nov;38(12):2608-18 [PMID: 9375580]
  69. Circ Res. 2004 Sep 17;95(6):645-54 [PMID: 15297379]
  70. Nat Med. 2020 May;26(5):792-802 [PMID: 32405060]
  71. Nat Commun. 2021 Jan 29;12(1):681 [PMID: 33514719]
  72. Vascul Pharmacol. 2007 Apr;46(4):229-37 [PMID: 17218160]
  73. Genome Med. 2019 Jul 30;11(1):47 [PMID: 31358043]
  74. PLoS One. 2018 May 15;13(5):e0196976 [PMID: 29763440]
  75. Exp Mol Med. 2020 Sep;52(9):1419-1427 [PMID: 32929221]
  76. BMC Genomics. 2014 Aug 27;15:725 [PMID: 25163811]
  77. Arch Pharm Res. 2018 Jul;41(7):711-724 [PMID: 29961196]
  78. Nat Cell Biol. 2020 Apr;22(4):487-497 [PMID: 32231307]
  79. BMC Bioinformatics. 2019 Feb 4;19(Suppl 13):57 [PMID: 30717659]
  80. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  81. Exp Ther Med. 2016 Sep;12(3):1639-1644 [PMID: 27602081]
  82. Nat Rev Clin Oncol. 2011 May 31;8(7):393-404 [PMID: 21629216]
  83. Science. 1998 Jan 16;279(5349):377-80 [PMID: 9430587]
  84. Nature. 2019 Nov;575(7783):512-518 [PMID: 31597160]
  85. Nat Methods. 2020 May;17(5):505-508 [PMID: 32371966]
  86. Nat Cell Biol. 2018 Feb;20(2):127-134 [PMID: 29311656]
  87. Cell Metab. 2021 Apr 6;33(4):818-832.e7 [PMID: 33548171]
  88. Bioconjug Chem. 2015 Aug 19;26(8):1542-9 [PMID: 26218622]
  89. Cell Stem Cell. 2008 Dec 4;3(6):625-36 [PMID: 19041779]
  90. Nat Rev Clin Oncol. 2009 Jun;6(6):315-26 [PMID: 19483738]
  91. Eur Heart J. 2019 Aug 7;40(30):2507-2520 [PMID: 31162546]
  92. Cell Discov. 2020 Oct 6;6:69 [PMID: 33083004]
  93. JCI Insight. 2019 Nov 14;4(22): [PMID: 31723062]
  94. Circ Res. 2020 Jul 3;127(2):310-329 [PMID: 32833569]
  95. Bioinformatics. 2020 Feb 15;36(4):1150-1158 [PMID: 31501871]
  96. Cell. 2018 Jul 26;174(3):716-729.e27 [PMID: 29961576]
  97. Nature. 1983 Jul 7-13;304(5921):30-4 [PMID: 6866086]
  98. Cell Stem Cell. 2018 Aug 02;23(2):210-225.e6 [PMID: 30075129]
  99. Sci Adv. 2020 Jul 08;6(28):eaba1972 [PMID: 32832598]
  100. Nature. 2021 Jul;595(7865):114-119 [PMID: 33915568]
  101. Physiol Genomics. 2001 Oct 10;7(1):55-63 [PMID: 11595792]
  102. Nat Commun. 2020 May 8;11(1):2285 [PMID: 32385277]
  103. Nature. 2020 Jul;583(7817):590-595 [PMID: 32669714]
  104. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  105. J Clin Oncol. 2014 Mar 10;32(8):752-9 [PMID: 24297945]
  106. J Am Soc Nephrol. 2018 Aug;29(8):2060-2068 [PMID: 29794128]
  107. Cell Res. 2020 Sep;30(9):745-762 [PMID: 32561858]
  108. Elife. 2020 Nov 03;9: [PMID: 33138917]
  109. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  110. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10623-8 [PMID: 12963823]
  111. J Control Release. 2007 Apr 2;118(2):235-44 [PMID: 17270308]
  112. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a006429 [PMID: 22315715]
  113. Methods Enzymol. 2008;445:177-208 [PMID: 19022060]
  114. Physiol Rev. 2018 Jan 1;98(1):3-58 [PMID: 29167330]
  115. Int J Mol Sci. 2020 Mar 22;21(6): [PMID: 32235704]
  116. STAR Protoc. 2021 Jul 28;2(3):100523 [PMID: 34382011]
  117. Nat Biotechnol. 2018 Nov;36(10):962-970 [PMID: 30222169]
  118. Am J Hum Genet. 2017 Nov 2;101(5):686-699 [PMID: 29106824]
  119. Nature. 2019 Dec;576(7785):132-137 [PMID: 31748748]
  120. Nature. 2015 Apr 9;520(7546):192-197 [PMID: 25830893]
  121. J Pathol. 2017 Feb;241(3):362-374 [PMID: 27859259]
  122. Genome Biol. 2019 Sep 9;20(1):194 [PMID: 31500660]
  123. Nature. 2017 Feb 16;542(7641):352-356 [PMID: 28166538]
  124. Bioinformatics. 2020 Feb 15;36(4):1234-1240 [PMID: 31501885]
  125. Genome Biol. 2020 Jan 16;21(1):12 [PMID: 31948481]
  126. Sci Adv. 2020 Sep 30;6(40): [PMID: 32998889]
  127. Stroke. 2013 Jul;44(7):1988-96 [PMID: 23743972]
  128. Cardiovasc Res. 2021 Apr 23;117(5):1402-1416 [PMID: 32678909]
  129. Cell Rep. 2019 Nov 5;29(6):1718-1727.e8 [PMID: 31693907]
  130. Circulation. 2007 Mar 13;115(10):1285-95 [PMID: 17353456]
  131. iScience. 2020 Mar 27;23(3):100882 [PMID: 32062421]
  132. Genom Data. 2015 Apr 11;4:115-8 [PMID: 26484194]
  133. Nature. 2010 Mar 4;464(7285):116-20 [PMID: 20154729]
  134. Cell. 2019 Jun 13;177(7):1915-1932.e16 [PMID: 31130381]
  135. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  136. J Thromb Haemost. 2007 Jul;5 Suppl 1:183-7 [PMID: 17635725]
  137. Cancer Cell. 2020 Jan 13;37(1):21-36.e13 [PMID: 31935371]
  138. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  139. Dev Cell. 2013 Jul 29;26(2):204-19 [PMID: 23871589]
  140. J Exp Med. 1976 Sep 1;144(3):828-33 [PMID: 956727]
  141. Cell Rep. 2021 Jun 15;35(11):109253 [PMID: 34133923]
  142. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9944-E9952 [PMID: 30275336]
  143. Cell. 2020 Aug 20;182(4):872-885.e19 [PMID: 32783915]
  144. Genome Biol. 2021 Jan 27;22(1):50 [PMID: 33504367]
  145. Nat Commun. 2020 Sep 4;11(1):4413 [PMID: 32887883]
  146. Angiogenesis. 2021 May;24(2):311-326 [PMID: 34061284]
  147. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  148. Curr Angiogenes. 2012 Jun 1;1(2):133-138 [PMID: 24729954]
  149. J Histochem Cytochem. 2006 Apr;54(4):385-95 [PMID: 16234507]
  150. Sci Adv. 2019 Dec 04;5(12):eaaw3851 [PMID: 31840053]
  151. Sci Adv. 2020 Jul 08;6(28):eaba1983 [PMID: 32832599]
  152. Dev Biol. 1983 Apr;96(2):535-41 [PMID: 6832482]
  153. N Engl J Med. 1971 Nov 18;285(21):1182-6 [PMID: 4938153]
  154. Circ Res. 2018 Mar 2;122(5):774-789 [PMID: 29496799]
  155. Circ Res. 2007 Feb 2;100(2):174-90 [PMID: 17272819]
  156. Nucleic Acids Res. 2020 Oct 9;48(18):e107 [PMID: 32955565]
  157. Elife. 2019 Mar 26;8: [PMID: 30912746]
  158. Pulm Circ. 2020 Feb 28;10(1): [PMID: 32166015]
  159. Circ Res. 2020 Nov 6;127(11):1437-1455 [PMID: 32981416]
  160. Nature. 2020 Oct;586(7831):785-789 [PMID: 33057196]
  161. Comput Struct Biotechnol J. 2021 Jan 19;19:961-969 [PMID: 33613863]
  162. Nat Nanotechnol. 2014 Aug;9(8):648-655 [PMID: 24813696]
  163. Exp Cell Res. 1997 Apr 10;232(1):47-55 [PMID: 9141620]
  164. Nat Cell Biol. 2020 Jan;22(1):108-119 [PMID: 31915373]
  165. Am J Pathol. 2008 Oct;173(4):1173-85 [PMID: 18787105]
  166. Cell Metab. 2020 Apr 7;31(4):862-877.e14 [PMID: 32268117]
  167. Mol Ther. 2021 Mar 3;29(3):1226-1238 [PMID: 33221435]
  168. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  169. Nat Commun. 2018 Oct 22;9(1):4383 [PMID: 30348985]
  170. Cell Mol Gastroenterol Hepatol. 2021;11(4):1139-1161 [PMID: 33340713]
  171. Cell Metab. 2014 Jan 7;19(1):37-48 [PMID: 24332967]
  172. Circulation. 2021 Jul 27;144(4):286-302 [PMID: 34030460]
  173. Cell Stem Cell. 2018 Mar 1;22(3):384-397.e6 [PMID: 29429943]
  174. Genome Biol. 2018 Dec 19;19(1):224 [PMID: 30567574]
  175. Circulation. 2021 Apr 27;143(17):1704-1719 [PMID: 33618539]
  176. Circ Res. 2018 Mar 2;122(5):670-677 [PMID: 29358229]
  177. Dev Cell. 2020 Mar 9;52(5):617-630.e6 [PMID: 32059772]
  178. Cancer Sci. 2017 Nov;108(11):2195-2203 [PMID: 28851003]
  179. Nat Methods. 2018 Jul;15(7):539-542 [PMID: 29941873]
  180. Cardiovasc Res. 2022 Aug 24;118(11):2519-2534 [PMID: 34528097]
  181. Nat Med. 2018 Aug;24(8):1277-1289 [PMID: 29988129]
  182. Nat Commun. 2021 Mar 10;12(1):1565 [PMID: 33692365]
  183. Nat Rev Drug Discov. 2016 Apr;15(4):275-92 [PMID: 26794270]
  184. Nat Biotechnol. 2021 Jan;39(1):30-34 [PMID: 32690972]
  185. STAR Protoc. 2021 Sep 14;2(3):100508 [PMID: 34585146]
  186. Cell Metab. 2018 Dec 4;28(6):881-894.e13 [PMID: 30146488]
  187. STAR Protoc. 2021 May 01;2(2):100489 [PMID: 34007969]
  188. Annu Rev Immunol. 2000;18:813-27 [PMID: 10837076]
  189. Trends Endocrinol Metab. 2020 Aug;31(8):580-595 [PMID: 32622584]
  190. Cardiovasc Res. 2016 Aug 1;111(3):172-83 [PMID: 27288009]
  191. Nature. 2019 Aug;572(7768):199-204 [PMID: 31292543]
  192. Int J Biol Sci. 2013 Nov 09;9(10):1057-69 [PMID: 24250251]
  193. Cancer Cell. 2016 Dec 12;30(6):968-985 [PMID: 27866851]
  194. Front Genet. 2019 Mar 01;10:8 [PMID: 30881372]
  195. Cell Mol Life Sci. 2021 Feb;78(4):1329-1354 [PMID: 33078209]
  196. Genome Biol. 2020 Feb 7;21(1):31 [PMID: 32033589]
  197. Nat Methods. 2021 Jan;18(1):9-14 [PMID: 33408395]
  198. Cancer Res. 2018 May 1;78(9):2370-2382 [PMID: 29449267]
  199. Nucleic Acids Res. 2020 Jan 8;48(D1):D77-D83 [PMID: 31665515]
  200. Nat Commun. 2020 Apr 29;11(1):2084 [PMID: 32350282]
  201. Front Genet. 2020 Feb 07;11:41 [PMID: 32117453]
  202. J Clin Invest. 1993 Jun;91(6):2609-19 [PMID: 7685772]
  203. Histol Histopathol. 2017 Sep;32(9):917-928 [PMID: 27990624]
  204. Cell Metab. 2018 Dec 4;28(6):866-880.e15 [PMID: 30146486]
  205. J Cell Biol. 1984 Dec;99(6):2034-40 [PMID: 6501412]
  206. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  207. Cell Syst. 2020 Jul 22;11(1):95-101.e5 [PMID: 32592658]
  208. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25800-25809 [PMID: 32989152]
  209. PLoS One. 2014 Dec 01;9(12):e113910 [PMID: 25437864]
  210. Sci Rep. 2021 Jan 21;11(1):1949 [PMID: 33479269]
  211. Nat Metab. 2019 Sep;1(9):912-926 [PMID: 31572976]
  212. Am J Respir Crit Care Med. 2019 Jun 15;199(12):1517-1536 [PMID: 30554520]
  213. Genes (Basel). 2017 Dec 05;8(12): [PMID: 29206167]
  214. Science. 2018 Jun 1;360(6392): [PMID: 29700227]
  215. Genome Biol. 2020 Feb 12;21(1):36 [PMID: 32051003]
  216. Nature. 2019 Aug;572(7767):120-124 [PMID: 31341279]
  217. J Am Soc Nephrol. 2020 Jan;31(1):118-138 [PMID: 31818909]
  218. J Cell Physiol. 1988 Sep;136(3):398-410 [PMID: 3170638]
  219. Science. 2006 Sep 29;313(5795):1929-35 [PMID: 17008526]

Grants

  1. CH/11/2/28733/British Heart Foundation
  2. 108906/B/15/Z/Wellcome Trust
  3. RG/14/3/30706/British Heart Foundation
  4. RG/20/5/34796/British Heart Foundation
  5. RG/19/3/34265/British Heart Foundation
  6. RE/18/5/34216/British Heart Foundation

MeSH Term

Animals
Endothelial Cells
Gene Expression Profiling
Transcriptome
Endothelium, Vascular
Mammals

Word Cloud

Created with Highcharts 10.0.0ECheterogeneityECsEndothelialvasculardiseasesheterogeneoussingle-cellstudiesaimeddiversityrecenthealthdiseasestrategiesOMICscellsconstituteinnerliningbedsmammalscrucialhomeostaticregulationbloodvesselphysiologyalsoplaykeyrolepathogenesismanytherebyrepresentingrealistictherapeutictargetsHoweverbecomeevidentencompassingseveralsubtypesdistinctfunctionsmakestargetingmodulationchallengingriseneweraledemergenceinterrogatingtranscriptomealongtreerevolutionizedunderstandingphysiologicalpathophysiologicalcontextdiscusslandmarkteasingapartnaturecoverdrivingepigenetictranscriptomicmetabolicforcesunderlyingwellcurrentusedcombatdisease-enrichedphenotypesproposetranscendlargelydescriptivetowardsprioritizationfunctionalvalidationtherapeuticallytargetabledriversLastlyprovideoverviewadvanceshurdlessingleDecipheringendothelialresolution:progressperspectivescellHeterogeneitySingle-cellVasculature

Similar Articles

Cited By