Systematic Characterization of Fluorescent Protein Maturation in Budding Yeast.

Paolo Guerra, Luc-Alban Vuillemenot, Brady Rae, Valeriia Ladyhina, Andreas Milias-Argeitis
Author Information
  1. Paolo Guerra: Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.
  2. Luc-Alban Vuillemenot: Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.
  3. Brady Rae: Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.
  4. Valeriia Ladyhina: Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands.
  5. Andreas Milias-Argeitis: Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands. ORCID

Abstract

Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, maturation rates can greatly deviate from estimates that are mostly available. In this work, we present the first systematic study of maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.

Keywords

References

  1. Mol Biol Cell. 2016 Nov 7;27(22):3385-3394 [PMID: 27385332]
  2. Mol Cell Biol. 2002 Nov;22(21):7459-72 [PMID: 12370293]
  3. Curr Protoc Cell Biol. 2007 Sep;Chapter 21:Unit 21.5 [PMID: 18228502]
  4. BMC Res Notes. 2010 Nov 14;3:303 [PMID: 21073756]
  5. G3 (Bethesda). 2016 Nov 8;6(11):3475-3483 [PMID: 27633789]
  6. Nat Methods. 2017 Jan;14(1):53-56 [PMID: 27869816]
  7. Infect Dis Model. 2020 Jan 07;5:111-128 [PMID: 31956740]
  8. Nat Protoc. 2007;2(1):31-4 [PMID: 17401334]
  9. Nat Commun. 2012;3:1012 [PMID: 22910358]
  10. PLoS One. 2013 Oct 14;8(10):e75991 [PMID: 24155882]
  11. Nat Methods. 2007 Feb;4(2):175-81 [PMID: 17237792]
  12. Cell Rep. 2015 Mar 17;10(10):1767-1777 [PMID: 25772363]
  13. Sci Rep. 2017 Sep 20;7(1):11999 [PMID: 28931898]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021908 [PMID: 18352052]
  15. Mol Biol Cell. 2021 Jun 15;32(13):1229-1240 [PMID: 33881352]
  16. Biochimie. 2005 Jul;87(7):625-35 [PMID: 15989979]
  17. Nat Chem Biol. 2014 Mar;10(3):196-202 [PMID: 24413462]
  18. Biochemistry. 2013 Sep 24;52(38):6653-61 [PMID: 23992349]
  19. Biophys J. 2008 Mar 15;94(6):2017-26 [PMID: 18065460]
  20. Nat Commun. 2012;3:1204 [PMID: 23149748]
  21. Mol Cell. 2018 May 17;70(4):745-756.e6 [PMID: 29775585]
  22. Nat Biotechnol. 2012 Jun 24;30(7):708-14 [PMID: 22729030]
  23. PLoS One. 2014 Jan 21;9(1):e85780 [PMID: 24465702]
  24. Nucleic Acids Res. 2012 Nov 1;40(20):e154 [PMID: 22810204]
  25. Elife. 2018 Jul 04;7: [PMID: 29972352]
  26. Chem Rev. 2012 Jul 11;112(7):4308-27 [PMID: 22559232]
  27. Sci Rep. 2016 Jun 21;6:28166 [PMID: 27324986]
  28. Biochemistry (Mosc). 2001 Dec;66(12):1342-51 [PMID: 11812239]
  29. Nat Methods. 2008 May;5(5):401-3 [PMID: 18425137]
  30. Anal Biochem. 2012 Feb 1;421(1):291-8 [PMID: 22093611]
  31. J Biol Chem. 2001 Aug 3;276(31):29188-94 [PMID: 11387331]
  32. Int J Mol Sci. 2016 Oct 28;17(11): [PMID: 27801849]
  33. PLoS One. 2016 Dec 1;11(12):e0167394 [PMID: 27907085]
  34. Biochem J. 2006 Dec 15;400(3):531-40 [PMID: 16859491]
  35. Nat Biotechnol. 2002 Jan;20(1):87-90 [PMID: 11753368]
  36. Trends Cell Biol. 2009 Nov;19(11):649-55 [PMID: 19819147]
  37. Annu Rev Biochem. 2011;80:357-73 [PMID: 21529159]
  38. Anal Biochem. 2011 Jul 15;414(2):173-8 [PMID: 21459075]
  39. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  40. Mol Syst Biol. 2020 May;16(5):e9335 [PMID: 32407587]
  41. Bio Protoc. 2018 Jan 20;8(2):e2710 [PMID: 29430484]
  42. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4916-20 [PMID: 22421136]
  43. J Biol Chem. 2017 Dec 15;292(50):20583-20591 [PMID: 29066625]
  44. Nat Methods. 2018 Jan;15(1):47-51 [PMID: 29320486]
  45. Nat Biotechnol. 2004 Dec;22(12):1567-72 [PMID: 15558047]
  46. Nucleic Acids Res. 2010 May;38(8):2676-81 [PMID: 20019065]
  47. Science. 2011 May 6;332(6030):732-5 [PMID: 21551064]
  48. Yeast. 1992 Jul;8(7):501-17 [PMID: 1523884]
  49. Biophys J. 2008 Aug;95(4):2103-15 [PMID: 18469087]
  50. Methods Cell Biol. 1999;58:19-30 [PMID: 9891372]
  51. Mol Biol Cell. 2016 Jan 15;27(2):360-70 [PMID: 26609072]
  52. ACS Sens. 2018 Sep 28;3(9):1735-1742 [PMID: 30168711]
  53. J Am Chem Soc. 2006 Apr 12;128(14):4766-72 [PMID: 16594713]
  54. Nat Biotechnol. 2002 Jan;20(1):83-7 [PMID: 11753367]
  55. Biochemistry. 1997 Jun 3;36(22):6786-91 [PMID: 9184161]
  56. Sci Signal. 2013 Jul 23;6(285):rs12 [PMID: 23882122]
  57. Nat Commun. 2018 Aug 30;9(1):3521 [PMID: 30166548]
  58. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  59. Genes Dev. 2009 Jun 15;23(12):1408-22 [PMID: 19528319]
  60. Annu Rev Biophys. 2008;37:375-97 [PMID: 18573087]
  61. Sci Rep. 2019 Feb 19;9(1):2234 [PMID: 30783202]
  62. Chem Soc Rev. 2009 Oct;38(10):2865-75 [PMID: 19771333]
  63. Front Genet. 2018 Nov 02;9:518 [PMID: 30450113]
  64. Yeast. 2000 Jun 30;16(9):857-60 [PMID: 10861908]
  65. Nat Methods. 2013 May;10(5):407-9 [PMID: 23524392]

MeSH Term

Coloring Agents
Gene Expression
Luminescent Proteins
Optogenetics
Saccharomycetales

Chemicals

Coloring Agents
Luminescent Proteins

Word Cloud

Created with Highcharts 10.0.0maturationFPcanbuddingyeastFluorescentcellsratespresentstudynewapproachexpressionmathematicalproteinlimitaccuracydynamicintracellularprocessescapturedreducebrightnessgivenfast-dividingknowledgetimescalesthereforehelpusersdetermineappropriateapplicationHowevergreatlydeviateestimatesmostlyavailableworkfirstsystematic12FPsovercometechnicallimitationstranslationinhibitorscommonlyusedimplementedbasedoptogeneticstimulationsgrownconstantnutrientconditionsCombiningrapidorthogonalinductiontranscriptionmodelallowedusaccuratelyestimatemicroscopydataminimallyinvasivemannerBesidesprovidingusefulresourcecommunityjointexperimentalcomputationalcharacterizingapplicablewiderangeorganismsSystematicCharacterizationProteinMaturationBuddingYeastEL222fluorescentproteinsmodelingtimeoptogenetics

Similar Articles

Cited By