Synergistic Immediate Cortical Activation on Mirror Visual Feedback Combined With a Soft Robotic Bilateral Hand Rehabilitation System: A Functional Near Infrared Spectroscopy Study.

Yaxian Qiu, Yuxin Zheng, Yawen Liu, Wenxi Luo, Rongwei Du, Junjie Liang, Anniwaer Yilifate, Yaoyao You, Yongchun Jiang, Jiahui Zhang, Aijia Chen, Yanni Zhang, Siqi Huang, Benguo Wang, Haining Ou, Qiang Lin
Author Information
  1. Yaxian Qiu: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  2. Yuxin Zheng: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  3. Yawen Liu: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  4. Wenxi Luo: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  5. Rongwei Du: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  6. Junjie Liang: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  7. Anniwaer Yilifate: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  8. Yaoyao You: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  9. Yongchun Jiang: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  10. Jiahui Zhang: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  11. Aijia Chen: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  12. Yanni Zhang: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  13. Siqi Huang: Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China.
  14. Benguo Wang: Department of Rehabilitation, Longgang District People's Hospital of Shenzhen, Shenzhen, China.
  15. Haining Ou: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
  16. Qiang Lin: Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Abstract

BACKGROUND: Mirror visual feedback (MVF) has been widely used in neurological rehabilitation. Due to the potential gain effect of the MVF combination therapy, the related mechanisms still need be further analyzed.
METHODS: Our self-controlled study recruited 20 healthy subjects (age 22.150 ± 2.661 years) were asked to perform four different visual feedback tasks with simultaneous functional near infrared spectroscopy (fNIRS) monitoring. The right hand of the subjects was set as the active hand (performing active movement), and the left hand was set as the observation hand (static or performing passive movement under soft robotic bilateral hand rehabilitation system). The four VF tasks were designed as RVF Task (real visual feedback task), MVF task (mirror visual feedback task), BRM task (bilateral robotic movement task), and MVF + BRM task (Mirror visual feedback combined with bilateral robotic movement task).
RESULTS: The beta value of the right pre-motor cortex (PMC) of MVF task was significantly higher than the RVF task (RVF task: -0.015 ± 0.029, MVF task: 0.011 ± 0.033, = 0.033). The beta value right primary sensorimotor cortex (SM1) in MVF + BRM task was significantly higher than MVF task (MVF task: 0.006 ± 0.040, MVF + BRM task: 0.037 ± 0.036, = 0.016).
CONCLUSION: Our study used the synchronous fNIRS to compare the immediate hemodynamics cortical activation of four visual feedback tasks in healthy subjects. The results showed the synergistic gain effect on cortical activation from MVF combined with a soft robotic bilateral hand rehabilitation system for the first time, which could be used to guide the clinical application and the future studies.

Keywords

References

  1. Arch Phys Med Rehabil. 2020 Feb;101(2):309-316 [PMID: 31678222]
  2. J Neural Eng. 2020 Aug 17;17(4):041001 [PMID: 32613947]
  3. Front Hum Neurosci. 2017 Feb 06;11:54 [PMID: 28220070]
  4. Prosthet Orthot Int. 2018 Jun;42(3):288-298 [PMID: 29153043]
  5. Eur J Phys Rehabil Med. 2019 Aug;55(4):442-449 [PMID: 30916531]
  6. J Clin Neurophysiol. 1988 Apr;5(2):183-6 [PMID: 3250964]
  7. PLoS One. 2019 May 23;14(5):e0216357 [PMID: 31120910]
  8. Front Hum Neurosci. 2019 Jan 09;12:531 [PMID: 30687047]
  9. Front Psychol. 2019 May 03;10:986 [PMID: 31130900]
  10. Hum Brain Mapp. 2001 Jan;12(1):1-19 [PMID: 11198101]
  11. Am J Phys Med Rehabil. 2021 Aug 1;100(8):766-773 [PMID: 33105154]
  12. Cochrane Database Syst Rev. 2014 Nov 12;(11):CD010820 [PMID: 25387001]
  13. Cereb Cortex. 2020 Jan 10;30(1):391-405 [PMID: 31504261]
  14. Neuroimage. 2009 Jan 15;44(2):428-47 [PMID: 18848897]
  15. Nature. 1995 Oct 12;377(6549):489-90 [PMID: 7566144]
  16. Front Comput Neurosci. 2019 May 09;13:30 [PMID: 31143108]
  17. J Cogn Neurosci. 2016 Jun;28(6):775-91 [PMID: 26942323]
  18. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD006073 [PMID: 17943883]
  19. J Neuroeng Rehabil. 2020 Sep 29;17(1):131 [PMID: 32993692]
  20. Neurology. 2004 Aug 10;63(3):468-74 [PMID: 15304577]
  21. Exp Brain Res. 2017 Jun;235(6):1933-1944 [PMID: 28315946]
  22. Nat Commun. 2020 Feb 4;11(1):705 [PMID: 32019940]
  23. Neurorehabil Neural Repair. 2015 May;29(4):349-61 [PMID: 25160567]
  24. J Hand Ther. 2020 Apr - Jun;33(2):198-208 [PMID: 32423846]
  25. Front Hum Neurosci. 2019 Feb 26;13:60 [PMID: 30863295]
  26. Front Hum Neurosci. 2015 Mar 30;9:173 [PMID: 25870557]
  27. Stroke. 2004 Apr;35(4):924-9 [PMID: 15001789]
  28. Front Neurol. 2020 Apr 02;11:155 [PMID: 32300326]
  29. Restor Neurol Neurosci. 2017;35(3):319-332 [PMID: 28506003]
  30. Cochrane Database Syst Rev. 2018 Jul 11;7:CD008449 [PMID: 29993119]
  31. Brain Behav. 2020 Jan;10(1):e01489 [PMID: 31805613]
  32. Occup Ther Int. 2015 Jun;22(2):51-60 [PMID: 25367222]
  33. Front Hum Neurosci. 2021 May 31;15:629592 [PMID: 34135740]
  34. Clin Neurophysiol. 2001 Apr;112(4):713-9 [PMID: 11275545]
  35. Zhongguo Zhen Jiu. 2020 Sep 12;40(9):918-22 [PMID: 32959583]
  36. Front Bioeng Biotechnol. 2020 Oct 26;8:553270 [PMID: 33195118]
  37. Neuroimage Clin. 2015 Jun 28;8:572-82 [PMID: 26236627]
  38. Annu Rev Neurosci. 2004;27:169-92 [PMID: 15217330]
  39. Arch Phys Med Rehabil. 2020 Jul;101(7):1120-1130 [PMID: 32145277]
  40. Neural Plast. 2018 Apr 24;2018:2321045 [PMID: 29853839]
  41. IEEE Trans Neural Syst Rehabil Eng. 2018 Sep;26(9):1897-1905 [PMID: 30106735]
  42. IEEE Int Conf Rehabil Robot. 2019 Jun;2019:337-342 [PMID: 31374652]
  43. Psychophysiology. 2018 Jul;55(7):e13061 [PMID: 29349781]
  44. Front Hum Neurosci. 2018 Mar 05;12:86 [PMID: 29556185]
  45. Brain. 2009 Jul;132(Pt 7):1693-710 [PMID: 19506071]
  46. Front Neurol. 2021 Jul 08;12:683703 [PMID: 34305792]
  47. Front Neurosci. 2020 Jul 09;14:724 [PMID: 32742257]
  48. J Stroke Cerebrovasc Dis. 2017 May;26(5):1020-1025 [PMID: 28162905]
  49. Hum Brain Mapp. 2018 Mar;39(3):1428-1437 [PMID: 29266623]

Word Cloud

Created with Highcharts 10.0.0MVFtask0visualfeedbackhand±roboticbilateralrehabilitationmovementBRMtask:MirrorusedgaineffectsubjectsfourtasksrightsoftsystemRVF+corticalactivationstudyhealthyfunctionalnearinfraredspectroscopyfNIRSsetactiveperformingmirrorcombinedbetavaluecortexsignificantlyhigher033=synergisticBACKGROUND:widelyneurologicalDuepotentialcombinationtherapyrelatedmechanismsstillneedanalyzedMETHODS:self-controlledrecruited20age221502661yearsaskedperformdifferentsimultaneousmonitoringleftobservationstaticpassiveVFdesignedTaskrealRESULTS:pre-motorPMC-0015029011primarysensorimotorSM1006040037036016CONCLUSION:synchronouscompareimmediatehemodynamicsresultsshowedfirsttimeguideclinicalapplicationfuturestudiesSynergisticImmediateCorticalActivationVisualFeedbackCombinedSoftRoboticBilateralHandRehabilitationSystem:FunctionalNearInfraredSpectroscopyStudy

Similar Articles

Cited By (4)