Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains.

Rohit Joshi, Pavel Pohl, Dita Strachotova, Petr Herman, Tomas Obsil, Veronika Obsilova
Author Information
  1. Rohit Joshi: Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
  2. Pavel Pohl: Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Czech Republic.
  3. Dita Strachotova: Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
  4. Petr Herman: Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
  5. Tomas Obsil: Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic. Electronic address: obsil@natur.cuni.cz.
  6. Veronika Obsilova: Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Czech Republic. Electronic address: veronika.obsilova@fgu.cas.cz.

Abstract

Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.

References

  1. Acta Neurol Belg. 2015 Sep;115(3):241-5 [PMID: 25542253]
  2. J Fluoresc. 2011 May;21(3):873-81 [PMID: 20066479]
  3. Biochemistry. 2006 May 30;45(21):6733-40 [PMID: 16716084]
  4. J Mol Biol. 2018 Jan 5;430(1):20-26 [PMID: 29180038]
  5. J Clin Invest. 2015 Sep;125(9):3433-48 [PMID: 26241057]
  6. Cell Death Differ. 2010 Jan;17(1):68-77 [PMID: 19557014]
  7. J Biol Chem. 2009 Jan 2;284(1):150-157 [PMID: 18981174]
  8. Nat Genet. 2016 Nov;48(11):1349-1358 [PMID: 27694961]
  9. Biochim Biophys Acta. 2003 May 2;1612(1):59-64 [PMID: 12729930]
  10. Curr Opin Nephrol Hypertens. 2015 Mar;24(2):111-6 [PMID: 25602517]
  11. Am J Physiol Renal Physiol. 2003 Nov;285(5):F916-29 [PMID: 12876068]
  12. J Biol Chem. 2015 Jun 26;290(26):16246-60 [PMID: 25971962]
  13. J Biol Chem. 2007 Oct 12;282(41):29866-73 [PMID: 17715136]
  14. J Biol Chem. 2004 Feb 6;279(6):4531-40 [PMID: 14613942]
  15. Prog Mol Biol Transl Sci. 2019;166:19-61 [PMID: 31521232]
  16. Mol Endocrinol. 2005 Dec;19(12):3073-84 [PMID: 16099816]
  17. Trends Biochem Sci. 1994 Dec;19(12):531-3 [PMID: 7846762]
  18. Mol Biosyst. 2012 Jan;8(1):178-84 [PMID: 21947246]
  19. J Biol Chem. 2010 Nov 19;285(47):36586-96 [PMID: 20843805]
  20. Nat Commun. 2021 Mar 15;12(1):1677 [PMID: 33723253]
  21. J Biol Chem. 2010 Jul 9;285(28):21671-8 [PMID: 20466724]
  22. J Med Chem. 2021 Jun 24;64(12):8423-8436 [PMID: 34076416]
  23. J Biol Chem. 2001 Jul 27;276(30):28321-6 [PMID: 11359767]
  24. Biochem J. 2008 Oct 1;415(1):155-63 [PMID: 18498246]
  25. J Biol Chem. 2007 Apr 20;282(16):12135-42 [PMID: 17322297]
  26. J Biol Chem. 1999 Apr 30;274(18):12525-30 [PMID: 10212229]
  27. J Biol Chem. 2007 Mar 16;282(11):8265-75 [PMID: 17244620]
  28. J Biol Chem. 2004 Oct 29;279(44):45753-8 [PMID: 15328345]
  29. Cell. 2001 Apr 20;105(2):257-67 [PMID: 11336675]
  30. Structure. 1996 May 15;4(5):495-9 [PMID: 8736547]
  31. J Biol Chem. 2004 Jul 9;279(28):28930-5 [PMID: 15123669]
  32. FASEB J. 2003 Jan;17(1):70-2 [PMID: 12424229]
  33. Biochemistry. 1971 Aug 17;10(17):3254-63 [PMID: 5119250]
  34. Sci Signal. 2009 Jul 14;2(79):pe41 [PMID: 19602703]
  35. Front Physiol. 2012 Jun 21;3:212 [PMID: 22737130]
  36. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7819-23 [PMID: 7644498]
  37. FEBS Lett. 1995 Aug 1;369(1):67-71 [PMID: 7641887]
  38. EMBO J. 2003 Oct 1;22(19):5241-50 [PMID: 14517261]
  39. FASEB J. 2001 Jan;15(1):204-214 [PMID: 11149908]
  40. Nat Protoc. 2007;2(9):2212-21 [PMID: 17853878]
  41. J Biol Chem. 2011 Oct 28;286(43):37830-40 [PMID: 21900244]
  42. J Biol Chem. 2009 Mar 20;284(12):8185-94 [PMID: 19144635]
  43. Commun Biol. 2021 Aug 19;4(1):986 [PMID: 34413451]
  44. J Biol Chem. 2002 Jan 4;277(1):5-8 [PMID: 11696533]
  45. PLoS Genet. 2017 Feb 17;13(2):e1006634 [PMID: 28212375]
  46. J Biol Chem. 2017 Jun 23;292(25):10398-10413 [PMID: 28461335]
  47. Nat Med. 2014 Nov;20(11):1242-53 [PMID: 25375928]
  48. J Am Soc Nephrol. 2008 Oct;19(10):1845-54 [PMID: 18753254]
  49. Data Brief. 2018 Jun 28;19:1683-1687 [PMID: 30229043]
  50. J Biol Chem. 2005 Apr 1;280(13):13187-94 [PMID: 15677482]
  51. Trends Biochem Sci. 2018 Aug;43(8):635-647 [PMID: 30056838]
  52. RSC Med Chem. 2021 Aug 2;12(9):1555-1564 [PMID: 34667951]
  53. Biochim Biophys Acta. 2014 Jun;1838(6):1536-47 [PMID: 24440424]
  54. Commun Biol. 2021 Jul 22;4(1):899 [PMID: 34294877]
  55. PLoS One. 2010 Aug 13;5(8):e12163 [PMID: 20730100]
  56. Biochem J. 2004 Jul 15;381(Pt 2):329-42 [PMID: 15167810]
  57. Int J Mol Sci. 2020 Nov 21;21(22): [PMID: 33233473]
  58. J Am Soc Nephrol. 2011 Sep;22(9):1707-19 [PMID: 21852580]
  59. J Biol Chem. 2017 Nov 24;292(47):19521-19536 [PMID: 28972136]

MeSH Term

14-3-3 Proteins
Catalytic Domain
Endosomal Sorting Complexes Required for Transport
Nedd4 Ubiquitin Protein Ligases
Neural Stem Cells
Protein Binding
Ubiquitin-Protein Ligases
WW Domains

Chemicals

14-3-3 Proteins
Endosomal Sorting Complexes Required for Transport
Nedd4 Ubiquitin Protein Ligases
Ubiquitin-Protein Ligases

Word Cloud

Created with Highcharts 10.0.014-3-3Nedd4-2bindingdomainsinteractionsdomainHECTproteinsfluorescenceresultsWW3WW4mobilesiteformcatalyticNeuralprecursorcellsexpresseddevelopmentallydownregulatedprotein4-2homologousE6-APcarboxylterminusubiquitinligasetriggersendocytosisdegradationdownstreamtargetmoleculesregulatingsignaltransductiontargetsincludingpreviousstudyfoundinducesstructuralrearrangementinhibitingstructuredusedtime-resolvedintensityanisotropydecaymeasurementstogetherquenchingmassspectrometrycharacterizeshowedaffectsemissionpropertiesAEDANS-labeledlesserextentWW2reducesmobilityWW1remainscontrastoppositeeffectactivesolventexposedcomplexedapoOverallsuggeststerichindrancecombinedconformationalchangesmayaccountbinding-mediatedregulationmodulatesaccessibilityWW

Similar Articles

Cited By