A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx.

Yang Yang, Jing Wu, Qiao Li, Jing Wang, Lixian Mu, Li Hui, Min Li, Wei Xu, Hailong Yang, Lin Wei
Author Information
  1. Yang Yang: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
  2. Jing Wu: School of Basic Medical Sciences, Kunming Medical University, Kunming, China.
  3. Qiao Li: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
  4. Jing Wang: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
  5. Lixian Mu: School of Basic Medical Sciences, Kunming Medical University, Kunming, China.
  6. Li Hui: The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
  7. Min Li: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
  8. Wei Xu: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
  9. Hailong Yang: School of Basic Medical Sciences, Kunming Medical University, Kunming, China.
  10. Lin Wei: Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China. ORCID

Abstract

The roles of bactericidal cathelicidins against bacterial infection have been extensively studied. However, the antibacterial property and mechanism of action of non-bactericidal cathelicidins are rarely known. Herein, a novel naturally occurring cathelicidin (CATH) from tree frog () did not't show any direct anti-bacterial activity in vitro. Intriguingly, intraperitoneal injection of CATH before bacterial inoculation significantly reduced the bacterial load in tree frogs and mice, and reduced the inflammatory response induced by bacterial inoculation in mice. CATH pretreatment also increased the survival rates of septic mice induced by a lethal dose of bacterial inoculation or cecal ligation and puncture (CLP). Intraperitoneal injection of CATH significantly drove the leukocyte influx in both frogs and mice. In mice, CATH rapidly drove neutrophil, monocyte/macrophage influx in mouse abdominal cavity and peripheral blood with a negligible impact on T and B lymphocytes, and neutrophils, monocytes/macrophages, but not T and B lymphocytes, were required for the preventive efficacy of CATH. CATH did not directly act as chemoattractant for phagocytes, but CATH obviously drove phagocyte migration when it was cultured with macrophages. CATH significantly elicited chemokine/cytokine production in macrophages through activating p38/ERK mitogen-activated protein kinases (MAPKs) and NF-κB p65. CATH markedly enhanced neutrophil phagocytosis via promoting the release of neutrophil extracellular traps (NETs). Additionally, CATH showed low side effects both in vitro and in vivo. Collectively, CATH acts as a host-based immune defense regulator that provides prophylactic efficacy against bacterial infection without direct antimicrobial effects. Our findings reveal a non-bactericidal cathelicidin which possesses unique anti-bacterial action, and highlight the potential of CATH to prevent bacterial infection.

Keywords

References

  1. J Leukoc Biol. 2013 Jul;94(1):159-70 [PMID: 23616580]
  2. J Leukoc Biol. 2010 Jan;87(1):93-106 [PMID: 20052802]
  3. J Agric Food Chem. 2021 May 26;69(20):5638-5651 [PMID: 33993695]
  4. J Leukoc Biol. 2004 Jan;75(1):39-48 [PMID: 12960280]
  5. Front Microbiol. 2014 Mar 20;5:97 [PMID: 24688483]
  6. J Exp Med. 2000 Oct 2;192(7):1069-74 [PMID: 11015447]
  7. J Immunol. 2017 Aug 15;199(4):1418-1428 [PMID: 28710255]
  8. J Immunol. 2010 Mar 1;184(5):2539-50 [PMID: 20107187]
  9. Nat Rev Immunol. 2006 Mar;6(3):173-82 [PMID: 16498448]
  10. Immunology. 2002 May;106(1):20-6 [PMID: 11972628]
  11. Proc Natl Acad Sci U S A. 2019 Dec 16;: [PMID: 31843919]
  12. Dev Comp Immunol. 2011 Mar;35(3):296-303 [PMID: 20950641]
  13. Amino Acids. 2012 Aug;43(2):677-85 [PMID: 22009138]
  14. Semin Immunopathol. 2007 Apr;29(1):27-43 [PMID: 17621952]
  15. Infect Immun. 1989 Oct;57(10):3142-6 [PMID: 2777377]
  16. mBio. 2019 Sep 10;10(5): [PMID: 31506312]
  17. Biochem J. 2014 Nov 15;464(1):3-11 [PMID: 25181554]
  18. J Immunol. 2005 May 15;174(10):6257-65 [PMID: 15879124]
  19. Nat Commun. 2017 Jul 25;8:15672 [PMID: 28742068]
  20. Immunity. 2015 Aug 18;43(2):304-17 [PMID: 26253786]
  21. PLoS One. 2014 Mar 27;9(3):e93216 [PMID: 24675879]
  22. Curr Biol. 2016 Jan 11;26(1):R14-9 [PMID: 26766224]
  23. Gene. 2015 Oct 25;571(2):172-7 [PMID: 26091834]
  24. Dev Comp Immunol. 2017 Dec;77:141-149 [PMID: 28801228]
  25. Mol Cell Proteomics. 2007 May;6(5):882-94 [PMID: 17272268]
  26. Infect Immun. 2005 Jun;73(6):3402-7 [PMID: 15908367]
  27. Amino Acids. 2017 Sep;49(9):1571-1585 [PMID: 28593346]
  28. FASEB J. 2014 Sep;28(9):3919-29 [PMID: 24868009]
  29. Immunity. 2015 Dec 15;43(6):1137-47 [PMID: 26680206]
  30. Cell Immunol. 2015 Feb;293(2):67-73 [PMID: 25577339]
  31. Elife. 2021 Apr 20;10: [PMID: 33875135]
  32. Nat Med. 2010 Jun;16(6):708-12 [PMID: 20473304]
  33. Nature. 2005 Oct 13;437(7061):975-80 [PMID: 16222292]
  34. Front Immunol. 2019 Oct 17;10:2421 [PMID: 31681309]
  35. Chem Rev. 2015 Feb 25;115(4):1760-846 [PMID: 25594509]
  36. Elife. 2018 Dec 18;7: [PMID: 30560784]
  37. Eur J Immunol. 2001 Apr;31(4):1066-75 [PMID: 11298331]
  38. Front Immunol. 2020 Jun 05;11:786 [PMID: 32582139]
  39. Genet Mol Res. 2016 Aug 05;15(3): [PMID: 27525920]
  40. Nat Biotechnol. 2007 Apr;25(4):465-72 [PMID: 17384586]
  41. FEBS J. 2013 Dec;280(23):6022-32 [PMID: 24028327]
  42. J Med Chem. 2013 Nov 27;56(22):9136-45 [PMID: 24151910]
  43. J Immunol. 2006 Feb 15;176(4):2455-64 [PMID: 16456005]
  44. Adv Exp Med Biol. 2000;479:203-18 [PMID: 10897421]
  45. J Med Chem. 2013 May 9;56(9):3546-56 [PMID: 23594231]
  46. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]
  47. J Med Microbiol. 2009 Aug;58(Pt 8):977-987 [PMID: 19528155]
  48. Amino Acids. 2015 Jul;47(7):1301-8 [PMID: 25792112]

MeSH Term

Animals
Anura
Bacteria
Bacterial Infections
Bone Marrow Cells
Cathelicidins
Cell Line
Chemotaxis
Female
Fungi
Humans
Macrophages
Macrophages, Peritoneal
Mice
Mice, Inbred C57BL
Microbial Sensitivity Tests
Phagocytes
Rats

Chemicals

Cathelicidins

Word Cloud

Created with Highcharts 10.0.0CATHbacterialmiceinfectioncathelicidininfluxnon-bactericidaltreefroginoculationsignificantlydroveneutrophilefficacyphagocytecathelicidinsactiondirectanti-bacterialvitroinjectionreducedfrogsinducedmouseTBlymphocytesmacrophageseffectsprovidesprophylacticantimicrobialrolesbactericidalextensivelystudiedHoweverantibacterialpropertymechanismrarelyknownHereinnovelnaturallyoccurringnot'tshowactivityIntriguinglyintraperitonealloadinflammatoryresponsepretreatmentalsoincreasedsurvivalratessepticlethaldosececalligationpunctureCLPIntraperitonealleukocyterapidlymonocyte/macrophageabdominalcavityperipheralbloodnegligibleimpactneutrophilsmonocytes/macrophagesrequiredpreventivedirectlyactchemoattractantphagocytesobviouslymigrationculturedelicitedchemokine/cytokineproductionactivatingp38/ERKmitogen-activatedproteinkinasesMAPKsNF-κBp65markedlyenhancedphagocytosisviapromotingreleaseextracellulartrapsNETsAdditionallyshowedlowsidevivoCollectivelyactshost-basedimmunedefenseregulatorwithoutfindingsrevealpossessesuniquehighlightpotentialpreventdrivingamphibianpeptideimmunologyinflammationprophylaxis

Similar Articles

Cited By