A neural population selective for song in human auditory cortex.
Sam V Norman-Haignere, Jenelle Feather, Dana Boebinger, Peter Brunner, Anthony Ritaccio, Josh H McDermott, Gerwin Schalk, Nancy Kanwisher
Author Information
Sam V Norman-Haignere: Zuckerman Institute, Columbia University, New York, NY, USA; HHMI Fellow of the Life Sciences Research Foundation, Chevy Chase, MD, USA; Laboratoire des Sytèmes Perceptifs, Département d'Études Cognitives, ENS, PSL University, CNRS, Paris, France; Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address: samuel_norman-haignere@urmc.rochester.edu.
Jenelle Feather: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.
Dana Boebinger: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA.
Peter Brunner: Department of Neurology, Albany Medical College, Albany, NY, USA; National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
Anthony Ritaccio: Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
Josh H McDermott: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA; Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA.
Gerwin Schalk: Department of Neurology, Albany Medical College, Albany, NY, USA.
Nancy Kanwisher: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.
How is music represented in the brain? While neuroimaging has revealed some spatial segregation between responses to music versus other sounds, little is known about the neural code for music itself. To address this question, we developed a method to infer canonical response components of human auditory cortex using intracranial responses to natural sounds, and further used the superior coverage of fMRI to map their spatial distribution. The inferred components replicated many prior findings, including distinct neural selectivity for speech and music, but also revealed a novel component that responded nearly exclusively to music with singing. Song selectivity was not explainable by standard acoustic features, was located near speech- and music-selective responses, and was also evident in individual electrodes. These results suggest that representations of music are fractionated into subpopulations selective for different types of music, one of which is specialized for the analysis of song.