A neural population selective for song in human auditory cortex.

Sam V Norman-Haignere, Jenelle Feather, Dana Boebinger, Peter Brunner, Anthony Ritaccio, Josh H McDermott, Gerwin Schalk, Nancy Kanwisher
Author Information
  1. Sam V Norman-Haignere: Zuckerman Institute, Columbia University, New York, NY, USA; HHMI Fellow of the Life Sciences Research Foundation, Chevy Chase, MD, USA; Laboratoire des Sytèmes Perceptifs, Département d'Études Cognitives, ENS, PSL University, CNRS, Paris, France; Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address: samuel_norman-haignere@urmc.rochester.edu.
  2. Jenelle Feather: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.
  3. Dana Boebinger: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA.
  4. Peter Brunner: Department of Neurology, Albany Medical College, Albany, NY, USA; National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
  5. Anthony Ritaccio: Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
  6. Josh H McDermott: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA; Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA.
  7. Gerwin Schalk: Department of Neurology, Albany Medical College, Albany, NY, USA.
  8. Nancy Kanwisher: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Brains, Minds and Machines, Cambridge, MA, USA.

Abstract

How is music represented in the brain? While neuroimaging has revealed some spatial segregation between responses to music versus other sounds, little is known about the neural code for music itself. To address this question, we developed a method to infer canonical response components of human auditory cortex using intracranial responses to natural sounds, and further used the superior coverage of fMRI to map their spatial distribution. The inferred components replicated many prior findings, including distinct neural selectivity for speech and music, but also revealed a novel component that responded nearly exclusively to music with singing. Song selectivity was not explainable by standard acoustic features, was located near speech- and music-selective responses, and was also evident in individual electrodes. These results suggest that representations of music are fractionated into subpopulations selective for different types of music, one of which is specialized for the analysis of song.

Keywords

References

  1. Nature. 1999 Oct 21;401(6755):788-91 [PMID: 10548103]
  2. Cognition. 2006 May;100(1):100-30 [PMID: 16412412]
  3. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  4. Brain. 2018 Jan 1;141(1):234-247 [PMID: 29228111]
  5. J Neurosci. 2017 Jul 5;37(27):6539-6557 [PMID: 28588065]
  6. Neuroimage. 2014 Sep;98:487-505 [PMID: 24990357]
  7. Science. 2014 Feb 28;343(6174):1006-10 [PMID: 24482117]
  8. Trends Cogn Sci. 2011 Jun;15(6):254-62 [PMID: 21592844]
  9. J Neurosci. 2004 Jul 28;24(30):6810-5 [PMID: 15282286]
  10. Neuroimage. 2006 Jul 1;31(3):1327-42 [PMID: 16546406]
  11. Psychol Sci. 2012 Oct 1;23(10):1074-8 [PMID: 22894936]
  12. Neuron. 2015 Dec 16;88(6):1281-1296 [PMID: 26687225]
  13. Hum Brain Mapp. 2002 Jan;15(1):1-25 [PMID: 11747097]
  14. J Neurosci. 2013 Dec 11;33(50):19451-69 [PMID: 24336712]
  15. J Neurosci. 2010 Mar 10;30(10):3572-8 [PMID: 20219991]
  16. J Neurosci. 2012 Oct 24;32(43):14915-20 [PMID: 23100414]
  17. Brain Res Cogn Brain Res. 2002 Feb;13(1):17-26 [PMID: 11867247]
  18. Nat Neurosci. 2001 May;4(5):533-9 [PMID: 11319563]
  19. J Neurosci. 2012 Oct 10;32(41):14205-16 [PMID: 23055490]
  20. PLoS Biol. 2018 Dec 3;16(12):e2005127 [PMID: 30507943]
  21. Psychon Bull Rev. 1994 Dec;1(4):476-90 [PMID: 24203555]
  22. Cereb Cortex. 2013 Feb;23(2):249-54 [PMID: 22314043]
  23. Neuron. 2012 Nov 8;76(3):486-502 [PMID: 23141061]
  24. Elife. 2018 Mar 07;7: [PMID: 29513219]
  25. J Neurosci. 2010 Jun 2;30(22):7604-12 [PMID: 20519535]
  26. Front Psychol. 2017 Jul 14;8:1179 [PMID: 28769835]
  27. Front Syst Neurosci. 2013 Apr 30;7:11 [PMID: 23641203]
  28. Nat Neurosci. 2015 Jun;18(6):903-11 [PMID: 25984889]
  29. Neuron. 2011 Feb 10;69(3):407-22 [PMID: 21315253]
  30. Nat Rev Neurosci. 2007 Jul;8(7):547-58 [PMID: 17585307]
  31. Curr Biol. 2019 Jun 17;29(12):1924-1937.e9 [PMID: 31130454]
  32. Curr Biol. 2018 Dec 17;28(24):3976-3983.e5 [PMID: 30503620]
  33. Cortex. 2014 Oct;59:126-37 [PMID: 25173956]
  34. Neuron. 2018 Jun 27;98(6):1099-1115.e8 [PMID: 29887338]
  35. Neural Comput. 2002 Apr;14(4):715-70 [PMID: 11936959]
  36. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 [PMID: 15188875]
  37. Neuron. 2018 May 2;98(3):630-644.e16 [PMID: 29681533]
  38. J Neurosci. 2011 Oct 5;31(40):14067-75 [PMID: 21976491]
  39. Neuroimage. 2010 Apr 15;50(3):1202-11 [PMID: 20096790]
  40. Neuropsychologia. 2015 Apr;70:58-63 [PMID: 25676678]
  41. Science. 2013 Apr 12;340(6129):216-9 [PMID: 23580531]
  42. J Acoust Soc Am. 2005 Aug;118(2):887-906 [PMID: 16158645]
  43. Curr Biol. 2018 Jun 18;28(12):1860-1871.e4 [PMID: 29861132]
  44. Nature. 2007 Nov 15;450(7168):425-9 [PMID: 18004384]
  45. Curr Biol. 2015 Oct 5;25(19):2457-65 [PMID: 26412129]
  46. J Neurolinguistics. 2012 Sep 1;25(5):408-422 [PMID: 22711978]
  47. Front Comput Neurosci. 2016 Feb 10;10:10 [PMID: 26903851]
  48. Hum Brain Mapp. 2018 Dec;39(12):4913-4924 [PMID: 30120854]
  49. Nature. 2000 Jan 20;403(6767):309-12 [PMID: 10659849]
  50. Neuron. 2002 Nov 14;36(4):767-76 [PMID: 12441063]
  51. J Neurophysiol. 2021 Jun 1;125(6):2237-2263 [PMID: 33596723]
  52. Cereb Cortex. 2013 Dec;23(12):2987-93 [PMID: 22989579]
  53. Vision Res. 1997 Dec;37(23):3311-25 [PMID: 9425546]
  54. J Neurophysiol. 2017 Jan 1;117(1):388-402 [PMID: 27832600]

Grants

  1. U24 NS109103/NINDS NIH HHS
  2. /Howard Hughes Medical Institute
  3. K99 DC018051/NIDCD NIH HHS
  4. R01 EB026439/NIBIB NIH HHS
  5. P50 MH109429/NIMH NIH HHS
  6. P41 EB018783/NIBIB NIH HHS
  7. DP1 HD091947/NICHD NIH HHS
  8. R01 EY013455/NEI NIH HHS
  9. R00 DC018051/NIDCD NIH HHS
  10. U01 NS108916/NINDS NIH HHS
  11. R25 HD088157/NICHD NIH HHS

MeSH Term

Acoustic Stimulation
Auditory Cortex
Auditory Perception
Brain Mapping
Humans
Music
Speech
Speech Perception

Word Cloud

Created with Highcharts 10.0.0musicresponsessoundsneuralauditorycortexsongrevealedspatialcomponentshumannaturalfMRIselectivityspeechalsocomponentselectiverepresentedbrain?neuroimagingsegregationversuslittleknowncodeaddressquestiondevelopedmethodinfercanonicalresponseusingintracranialusedsuperiorcoveragemapdistributioninferredreplicatedmanypriorfindingsincludingdistinctnovelrespondednearlyexclusivelysingingSongexplainablestandardacousticfeatureslocatednearspeech-music-selectiveevidentindividualelectrodesresultssuggestrepresentationsfractionatedsubpopulationsdifferenttypesonespecializedanalysispopulationECoGelectrocorticographyvoice

Similar Articles

Cited By