Nanowired electrodes as outer membrane cytochrome-independent electronic conduit in .

David Rehnlund, Guiyeoul Lim, Laura-Alina Philipp, Johannes Gescher
Author Information
  1. David Rehnlund: Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
  2. Guiyeoul Lim: Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
  3. Laura-Alina Philipp: Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
  4. Johannes Gescher: Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.

Abstract

Extracellular electron transfer (EET) from microorganisms to inorganic electrodes is a unique ability of electrochemically active bacteria. Despite rigorous genetic and biochemical screening of the -type cytochromes that make up the EET network, the individual electron transfer steps over the cell membrane remain mostly unresolved. As such, attempts to transplant entire EET chains from native into non-native exoelectrogens have resulted in inferior electron transfer rates. In this study we investigate how nanostructured electrodes can interface with to establish an alternative EET pathway. Improved biocompatibility was observed for densely packed nanostructured surfaces with a low cell-nanowire load distribution during applied external forces. External gravitational forces were needed to establish a bioelectrochemical cell-nanorod interface. Bioelectrochemical analysis showed evidence of nanorod penetration beyond the outer cell membrane of a deletion mutant lacking all outer membrane cytochrome encoding genes that was only electroactive on a nanostructured surface and under external force.

Keywords

References

  1. Mol Microbiol. 2018 Sep;109(5):571-583 [PMID: 29995975]
  2. Adv Colloid Interface Sci. 2018 Feb;252:55-68 [PMID: 29317019]
  3. Appl Environ Microbiol. 2012 Feb;78(4):913-21 [PMID: 22179232]
  4. Nat Nanotechnol. 2012 Feb 12;7(3):185-90 [PMID: 22327876]
  5. Nanoscale. 2015 Aug 28;7(32):13591-604 [PMID: 26206712]
  6. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74 [PMID: 16537430]
  7. Nat Rev Microbiol. 2009 May;7(5):375-81 [PMID: 19330018]
  8. Adv Colloid Interface Sci. 2017 Oct;248:85-104 [PMID: 28780961]
  9. Adv Mater. 2011 Feb 15;23(7):807-20 [PMID: 21328478]
  10. Microbiology (Reading). 2012 Aug;158(Pt 8):2144-2157 [PMID: 22493303]
  11. Nanoscale Res Lett. 2014 Feb 03;9(1):56 [PMID: 24484729]
  12. Nat Nanotechnol. 2014 Feb;9(2):142-7 [PMID: 24336402]
  13. Nat Commun. 2013;4:2751 [PMID: 24202068]
  14. Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19213-8 [PMID: 20956333]
  15. Chemphyschem. 2003 Feb 17;4(2):131-8 [PMID: 12619411]
  16. Nat Nanotechnol. 2012 Jan 10;7(3):180-4 [PMID: 22231664]
  17. Nat Rev Microbiol. 2008 Aug;6(8):592-603 [PMID: 18604222]
  18. Nano Lett. 2013;13(12):6002-8 [PMID: 24237230]
  19. Adv Mater. 2020 Mar;32(9):e1903862 [PMID: 31944430]
  20. ACS Nano. 2015 Dec 22;9(12):11667-77 [PMID: 26554425]
  21. Science. 2009 Jan 9;323(5911):237-40 [PMID: 19131625]
  22. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16806-10 [PMID: 20837546]
  23. Nano Lett. 2013 Jun 12;13(6):2864-9 [PMID: 23682751]
  24. J Bacteriol. 2010 Jul;192(13):3345-51 [PMID: 20400539]
  25. Nat Rev Microbiol. 2019 May;17(5):307-319 [PMID: 30846876]
  26. Nano Lett. 2012 Aug 8;12(8):3881-6 [PMID: 22166016]
  27. Nano Lett. 2014 Sep 10;14(9):5471-6 [PMID: 25115484]
  28. Chem Rev. 2018 Aug 22;118(16):7409-7531 [PMID: 30052023]

Word Cloud

Created with Highcharts 10.0.0EETmembraneelectrontransferelectrodesnanostructuredoutercellinterfaceestablishexternalforcesExtracellularmicroorganismsinorganicuniqueabilityelectrochemicallyactivebacteriaDespiterigorousgeneticbiochemicalscreening-typecytochromesmakenetworkindividualstepsremainmostlyunresolvedattemptstransplantentirechainsnativenon-nativeexoelectrogensresultedinferiorratesstudyinvestigatecanalternativepathwayImprovedbiocompatibilityobserveddenselypackedsurfaceslowcell-nanowireloaddistributionappliedExternalgravitationalneededbioelectrochemicalcell-nanorodBioelectrochemicalanalysisshowedevidencenanorodpenetrationbeyonddeletionmutantlackingcytochromeencodinggeneselectroactivesurfaceforceNanowiredcytochrome-independentelectronic conduitBiomaterialsNanostructureNanotechnology

Similar Articles

Cited By