Optimizing human-centered AI for healthcare in the Global South.

Chinasa T Okolo
Author Information
  1. Chinasa T Okolo: Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

Abstract

Over the past 60 years, artificial intelligence (AI) has made significant progress, but most of its benefits have failed to make a significant impact within the Global South. Current practices that have led to biased systems will prevent AI from being actualized unless significant efforts are made to change them. As technical advances in AI and an interest in solving new problems lead researchers and tech companies to develop AI applications that target the health of marginalized communities, it is crucially important to study how AI can be used to empower those on the front lines in the Global South and how these tools can be optimally designed for marginalized communities. This perspective examines the landscape of AI for healthcare in the Global South and the evaluations of such systems and provides tangible recommendations for AI practitioners and human-centered researchers to incorporate in the development of AI systems for use with marginalized populations.

Keywords

References

  1. PeerJ. 2019 Oct 4;7:e7702 [PMID: 31592346]
  2. JAMA Ophthalmol. 2019 Oct 1;137(10):1182-1188 [PMID: 31393538]
  3. JAMA Ophthalmol. 2019 Sep 1;137(9):987-993 [PMID: 31194246]
  4. BMC Med. 2019 Oct 29;17(1):195 [PMID: 31665002]
  5. Iran J Public Health. 2020 Oct;49(Suppl 1):92-100 [PMID: 34268211]
  6. BMC Ophthalmol. 2021 May 21;21(1):228 [PMID: 34020592]
  7. JAMA. 2020 Sep 22;324(12):1212-1213 [PMID: 32960230]
  8. Int J Tuberc Lung Dis. 2020 Apr 1;24(4):444-451 [PMID: 32317070]
  9. Med Biol Eng Comput. 2016 Nov;54(11):1751-1759 [PMID: 27016365]
  10. NPJ Digit Med. 2021 Feb 19;4(1):31 [PMID: 33608629]
  11. Lancet Digit Health. 2021 Jan;3(1):e51-e66 [PMID: 33735069]
  12. Science. 2019 Oct 25;366(6464):447-453 [PMID: 31649194]
  13. PLoS Negl Trop Dis. 2017 Oct 16;11(10):e0005973 [PMID: 29036169]
  14. J Thorac Dis. 2020 Mar;12(3):165-174 [PMID: 32274081]
  15. Disaster Med Public Health Prep. 2020 Oct;14(5):e33-e38 [PMID: 32317044]
  16. BMJ Health Care Inform. 2021 Apr;28(1): [PMID: 33910923]
  17. Lancet Digit Health. 2019 May;1(1):e35-e44 [PMID: 33323239]
  18. Chaos Solitons Fractals. 2020 Dec;141:110337 [PMID: 33071481]
  19. JAMA Intern Med. 2021 Aug 1;181(8):1065-1070 [PMID: 34152373]
  20. Front Artif Intell. 2021 Apr 29;4:553987 [PMID: 33997772]

Word Cloud

Created with Highcharts 10.0.0AIGlobalSouthsignificantsystemshealthmarginalizedhuman-centeredartificialintelligencemadetechnicalresearcherscommunitiescanhealthcareevaluationspast60yearsprogressbenefitsfailedmakeimpactwithinCurrentpracticesledbiasedwillpreventactualizedunlesseffortschangeadvancesinterestsolvingnewproblemsleadtechcompaniesdevelopapplicationstargetcruciallyimportantstudyusedempowerfrontlinestoolsoptimallydesignedperspectiveexamineslandscapeprovidestangiblerecommendationspractitionersincorporatedevelopmentusepopulationsOptimizingMLcommunityworkersethicsglobalmachinelearningparticipatorydesign

Similar Articles

Cited By