Synthesis of N-Doped Highly Graphitic Carbon Urchin-Like Hollow Structures Loaded with Single-Ni Atoms towards Efficient CO Electroreduction.

Yunxiang Li, Xue Feng Lu, Shibo Xi, Deyan Luan, Xin Wang, Xiong Wen David Lou
Author Information
  1. Yunxiang Li: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  2. Xue Feng Lu: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID
  3. Shibo Xi: Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833, Singapore.
  4. Deyan Luan: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  5. Xin Wang: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID
  6. Xiong Wen David Lou: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID

Abstract

The rational design of single-atom catalysts featuring excellent conductivity, highly accessible discrete active sites and favorable mass transfer is crucial for electrocatalysis but remains challenging. In this study, a reliable Ni-catalyzed and Ni-templated strategy is developed to synthesize a single-atom catalyst by transforming metallic Ni into single-Ni atoms anchored on hollow porous urchin-like (HPU) N-doped carbon (NC) (designated as Ni-NC(HPU)), which possesses high crystallinity and sufficient Ni-N moiety (2.4 wt %). The unique hollow thorns on the surface, good conductivity and large external surface area facilitate electron/mass transfer and exposure of single-Ni sites. As a result, the Ni-NC(HPU) catalyst exhibits remarkable activity and high stability for CO electroreduction. Moreover, this synthetic strategy can also be facilely extended to prepare distinct hollow porous architectures with similar components, such as the wire- and sphere-like ones.

Keywords

References

  1. C. Costentin, M. Robert, J. M. Saveant, Chem. Soc. Rev. 2013, 42, 2423.
  2. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631.
  3. C. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Renewable Sustainable Energy Rev. 2011, 15, 1.
  4. S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 8499;
  5. Angew. Chem. 2019, 131, 8587.
  6. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807;
  7. Angew. Chem. 2020, 132, 10899.
  8. Y. Li, S. L. Zhang, W. Cheng, Y. Chen, D. Luan, S. Gao, X. W. Lou, Adv. Mater. 2022, 34, 2105204.
  9. H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, T. Zhang, Nat. Commun. 2019, 10, 4585.
  10. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Nature 2016, 537, 382.
  11. S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu, J. L. Luo, J. Am. Chem. Soc. 2017, 139, 2160.
  12. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 8078.
  13. H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1904548.
  14. Y. Li, S. Wang, X. S. Wang, Y. He, Q. Wang, Y. Li, M. Li, G. Yang, J. Yi, H. Lin, D. Huang, L. Li, H. Chen, J. Ye, J. Am. Chem. Soc. 2020, 142, 19259.
  15. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218.
  16. X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889.
  17. H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140.
  18. Z. Yang, B. Chen, W. Chen, Y. Qu, F. Zhou, C. Zhao, Q. Xu, Q. Zhang, X. Duan, Y. Wu, Nat. Commun. 2019, 10, 3734.
  19. D. Huang, Y. Luo, S. Li, L. Liao, Y. Li, H. Chen, J. Ye, Mater. Horiz. 2020, 7, 970.
  20. X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Nano-Micro Lett. 2021, 13, 136.
  21. H. Zhang, W. Cheng, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2021, 60, 13177;
  22. Angew. Chem. 2021, 133, 13285.
  23. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2016, 28, 1668.
  24. X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
  25. F. Jaouen, M. Lefevre, J. P. Dodelet, M. Cai, J. Phys. Chem. B 2006, 110, 5553.
  26. T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong, Y. Wang, S. Zhang, A. Han, L. Gu, R. Yu, X. Wen, H. Ren, L. Xu, C. Chen, Q. Peng, D. Wang, Y. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 12692.
  27. Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang, Adv. Mater. 2019, 31, 1806312.
  28. H. Zhou, T. Yang, Z. Kou, L. Shen, Y. Zhao, Z. Wang, X. Wang, Z. Yang, J. Du, J. Xu, M. Chen, L. Tian, W. Guo, Q. Wang, H. Lv, W. Chen, X. Hong, J. Luo, D. He, Y. Wu, Angew. Chem. Int. Ed. 2020, 59, 20465;
  29. Angew. Chem. 2020, 132, 20645.
  30. R. Zhao, Z. Liang, S. Gao, C. Yang, B. Zhu, J. Zhao, C. Qu, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 2019, 58, 1975;
  31. Angew. Chem. 2019, 131, 1997.
  32. Y. He, Y. Li, J. Zhang, S. Wang, D. Huang, G. Yang, X. Yi, H. Lin, X. Han, W. Hu, Y. Deng, J. Ye, Nano Energy 2020, 77, 105010.
  33. X. Xie, L. Peng, H. Yang, G. I. N. Waterhouse, L. Shang, T. Zhang, Adv. Mater. 2021, 33, 2101038.
  34. W. Xiong, H. Li, H. Wang, J. Yi, H. You, S. Zhang, Y. Hou, M. Cao, T. Zhang, R. Cao, Small 2020, 16, 2003943.
  35. P. Kuang, Y. Wang, B. Zhu, F. Xia, C. W. Tung, J. Wu, H. M. Chen, J. Yu, Adv. Mater. 2021, 33, 2008599.
  36. A. Delamoreanu, C. Rabot, C. Vallee, A. Zenasni, Carbon 2014, 66, 48.
  37. J. Ye, L. Liu, J. Oakdale, J. Lefebvre, S. Bhowmick, T. Voisin, J. D. Roehling, W. L. Smith, M. R. Ceron, J. van Ham, L. B. Bayu Aji, M. M. Biener, Y. M. Wang, P. R. Onck, J. Biener, Nat. Mater. 2021, 20, 1498.
  38. J. P. Chen, K. Isa, J. Mass Spectrom. Soc. Jpn. 1998, 46, 299.
  39. S. Tischer, M. Bornhorst, J. Amsler, G. Schoch, O. Deutschmann, Phys. Chem. Chem. Phys. 2019, 21, 16785.
  40. K. K. Datta, V. V. Balasubramanian, K. Ariga, T. Mori, A. Vinu, Chem. Eur. J. 2011, 17, 3390.
  41. C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong, J. Ning, C. Zheng, Z. Zhang, Y. Hu, J. Mater. Sci. 2019, 54, 5412.
  42. Y. Zhang, L. Jiao, W. Yang, C. Xie, H. L. Jiang, Angew. Chem. Int. Ed. 2021, 60, 7607;
  43. Angew. Chem. 2021, 133, 7685.
  44. J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu, Angew. Chem. Int. Ed. 2018, 57, 14095;
  45. Angew. Chem. 2018, 130, 14291.
  46. H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
  47. J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 2020, 32, 2003134.
  48. S. Liu, X. F. Lu, J. Xiao, X. Wang, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 13828;
  49. Angew. Chem. 2019, 131, 13966.
  50. F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen, Z. Ren, ACS Catal. 2017, 7, 2052.

Grants

  1. MOE2019-T2-2-049/Ministry of Education of Singapore

Word Cloud

Created with Highcharts 10.0.0hollowHPUsingle-atomconductivitysitestransferstrategycatalystsingle-NiporousNi-NChighsurfaceCOCarbonHollowrationaldesigncatalystsfeaturingexcellenthighlyaccessiblediscreteactivefavorablemasscrucialelectrocatalysisremainschallengingstudyreliableNi-catalyzedNi-templateddevelopedsynthesizetransformingmetallicNiatomsanchoredurchin-likeN-dopedcarbonNCdesignatedpossessescrystallinitysufficientNi-Nmoiety24 wt %uniquethornsgoodlargeexternalareafacilitateelectron/massexposureresultexhibitsremarkableactivitystabilityelectroreductionMoreoversyntheticcanalsofacilelyextendedpreparedistinctarchitecturessimilarcomponentswire-sphere-likeonesSynthesisN-DopedHighlyGraphiticUrchin-LikeStructuresLoadedSingle-NiAtomstowardsEfficientElectroreductionCO2ReductionElectrocatalysisPorousSingle-AtomCatalysts

Similar Articles

Cited By